1. Dạng 1: Xác định chu kì, tần số của mạch dao động
- Tần số góc: \(\omega = \dfrac{1}{{\sqrt {LC} }}{\rm{ }} \to T = 2\pi \sqrt {LC} ;{\rm{ }}f = \dfrac{1}{{2\pi \sqrt {LC} }}\)
- Bài toán ghép tụ điện nối tiếp và song song
Mạch gồm L và C1 có tần số f1 - Mạch gồm L và C2 có tần số f2
- Bài toán ghép cuộn cảm nối tiếp và song song
Mạch gồm L1 và C có tần số f1 - Mạch gồm L2 và C có tần số f2
a) Hai tụ \({C_1}\) và \({C_2}\) mắc song song
b) Hai tụ \({C_1}\) và \({C_2}\) mắc nối tiếp
Hướng dẫn giải
a) \({C_1}//{C_2}\)
=> \(\frac{1}{{{f^2}}} = \frac{1}{{f_1^2}} + \frac{1}{{f_2^2}} = \frac{1}{{{{60}^2}}} + \frac{1}{{{{80}^2}}} \Rightarrow f = 48kHz\)
b) \({C_1}nt{C_2}\)
=> \({f^2} = f_1^2 + f_2^2 = {60^2} + {80^2} \Rightarrow f = 100kHz\)
2. Dạng 2: Xác định I0, Q0, U0, u, i
- Từ phương trình dao động: \(q = {Q_0}cos\left( {\omega t + \varphi } \right),i = q' = - \omega {Q_0}sin(\omega t + \varphi ) = {I_0}cos(\omega t + \varphi + \dfrac{\pi }{2})\)
\(u = \dfrac{q}{C} = \dfrac{{{Q_0}}}{C}{\rm{cos(}}\omega {\rm{t + }}\varphi {\rm{) = }}{{\rm{U}}_0}{\rm{cos(}}\omega {\rm{t + }}\varphi {\rm{)}}\)
=> Mối liên hệ giữa các đại lượng:
\({I_0} = \omega {Q_0} = \dfrac{{{Q_0}}}{{\sqrt {LC} }}\) , \({U_0} = \dfrac{{{Q_0}}}{C} = \dfrac{{{I_0}}}{{\omega C}} = \omega L{I_0} = {I_0}\sqrt {\dfrac{L}{C}} \)
- Điện áp tức thời:
- Dòng điện tức thời:
- Điện tích tức thời:
Điện áp và cường độ dòng điện hiệu dụng: \(U = \dfrac{{{U_0}}}{{\sqrt 2 }};I = \dfrac{{{I_0}}}{{\sqrt 2 }}\)
3. Dạng 3. Năng lượng của mạch dao động LC
a. Phương pháp
- Năng lượng điện trường tập trung ở trong tụ điện: \({W_d} = \dfrac{1}{2}C{u^2} = \dfrac{1}{2}qu = \dfrac{{{q^2}}}{{2C}} = \dfrac{{Q_0^2}}{{2C}}{\rm{co}}{{\rm{s}}^2}(\omega t + \varphi )\)
- Năng lượng từ trường tập trung trong cuộn cảm: \({W_t} = \dfrac{1}{2}L{i^2} = \dfrac{{Q_0^2}}{{2C}}{\sin ^2}\left( {\omega t + \varphi } \right)\)
- Trong quá trình dao động của mạch, năng lượng từ và năng lượng điện trường luôn chuyển hóa cho nhau, nhưng tổng năng lượng điện từ là không đổi.
- Năng lượng điện từ: \(W = {W_d} + {W_t} = \dfrac{1}{2}C{u^2} + \dfrac{1}{2}L{i^2} = \dfrac{1}{2}CU_0^2 = \dfrac{{Q_0^2}}{{2C}} = \dfrac{1}{2}LI_0^2\)
- Vị trí năng lượng điện trường gấp $n$ lần năng từ điện trường:
\(\left\{ \begin{array}{l}{W_d} = n{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{1}{{n + 1}}W\\{W_d} = \dfrac{n}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}i = \pm \dfrac{{{I_0}}}{{\sqrt {n + 1} }}\\u = \pm {U_0}\sqrt {\dfrac{n}{{n + 1}}} \\q = \pm {Q_0}\sqrt {\dfrac{n}{{n + 1}}} \end{array} \right.\)
- Mạch có cuộn dây không thuần cảm (r≠0):
Công suất tỏa nhiệt trên r hay công suất cần phải cung câp thêm cho mạch để duy trì dao động:
\(P = {I^2}r = \dfrac{{I_0^2}}{2}r\)
b. Ví dụ
Ví dụ 1: Một mạch dao động điều hòa, biết phương trình hiệu điện thế giữa hai bản của tụ điện là \(u = 60cos({10^4}\pi t){\rm{ }}\left( V \right),\) điện dung của tụ điện \(C = 1\mu F\) . Tính năng lượng điện từ trong khung dao động? |
Hướng dẫn:
Sử dụng công thức tính năng lượng của mạch dao động: \(W = \dfrac{1}{2}CU_0^2\)
Thay U0=60 V, C=1μF vào, ta được: \(W = \dfrac{1}{2}CU_0^2 = \dfrac{1}{2}{10^{ - 6}}{60^2} = {1,8.10^{ - 3}}(J)\)
Ví dụ 2: Mạch dao động LC, với cuộn dây có \(L = 5\mu F\) . Cường độ dòng điện cực đại trong mạch là 2A. Khi cường độ dòng điện tức thời trong mạch là 1A thì năng lượng điện trường trong mạch là? |
Hướng dẫn:
Sử dụng công thức tính năng lượng của mạch dao động: \(W = {W_d} + {W_t}\)
Ta có: \(W = {W_d} + {W_t} = \dfrac{1}{2}LI_0^2 \to {W_d} = W - {W_t} = \dfrac{1}{2}LI_0^2 - \dfrac{1}{2}L{i^2} = \dfrac{L}{2}(I_0^2 - {i^2}) = \dfrac{{{{5.10}^{ - 6}}}}{2}({2^2} - {1^2}) = {7,5.10^{ - 6}}(J)\)
4. Dạng 4. Viết phương trình dao động
Ta có:
- Phương trình điện tích trên hai bản tụ điện: \(q{\rm{ }} = {\rm{ }}{Q_0}cos\left( {\omega t + {\varphi _q}} \right)\)
- Phương trình điện áp giữa hai bản tụ điện: \(u = \frac{{{Q_0}}}{C}cos\left( {\omega t + {\varphi _u}} \right){\rm{ }} = {U_0}cos\left( {\omega t + {\varphi _u}} \right)\)
- Phương trình điện áp dòng điện chạy trong mạch: \(i = q' = - {Q_0}\omega sin{\varphi _q} = {I_0}cos\left( {\omega t + {\varphi _i}} \right)\)
Trong đó:
Các bước viết phương trình dao động:
tại t = 0: \(\left\{ \begin{array}{l}q = {Q_0}{\rm{cos}}\varphi \\i = - {I_0}\omega {\rm{sin}}\varphi \\u = {U_0}{\rm{cos}}\varphi \end{array} \right. \to \varphi \)
(Ta chỉ cần 2 dữ kiện q và i hoặc i và u để xác định φ)
Lưu ý: Các bước có thể đổi vị trí cho nhau
Ví dụ:
Ví dụ 1: Trong một mạch dao động, điện tích trên tụ biến thiên theo quy luật\(q = 2,5c{\rm{os(2}}{\rm{.1}}{{\rm{0}}^3}\pi t + \frac{\pi }{3}){\rm{ }}\mu {\rm{C}}\). Biểu thức cường độ dòng điện qua cuộn dây là: |
Hướng dẫn:
Cường độ dòng điện cực đại: \({I_0} = {Q_0}\omega = {2,5.10^{ - 6}}{.2.10^3}\pi = {5.10^{ - 3}}\pi A = 5\pi {\rm{ }}mA\)
\({\varphi _i} = {\varphi _q} + \frac{\pi }{2} = \frac{\pi }{3} + \frac{\pi }{2} = \frac{{5\pi }}{6}\)
\( \to i = 5\pi c{\rm{os(2}}{\rm{.1}}{{\rm{0}}^3}\pi t + \frac{{5\pi }}{6}){\rm{ mA}}\)
Ví dụ 2: Một mạch dao động LC có tụ điện với điện dung \(C = {\rm{ }}25{\rm{ }}pF\) và cuộn cảm có độ tự cảm \(L = {\rm{ }}{4.10^{ - 4}}H\) . Lúc t=0, dòng điện trong mạch có giá trị cực đại và bằng \(20{\rm{ }}mA\) . Biểu thức của điện tích trên bản cực của tụ điện là: |
Tần số góc của mạch dao động: \(\omega = \frac{1}{{\sqrt {LC} }} = \frac{1}{{\sqrt {{{4.10}^{ - 4}}{{.5.10}^{ - 12}}} }} = {10^7}rad/s\)Hướng dẫn:
Điện tích cực đại giữa hai bản tụ điện: \({Q_0} = \frac{{{I_0}}}{\omega } = \frac{{{{20.10}^{ - 3}}}}{{{{10}^7}}} = {2.10^{ - 9}}C = 2{\rm{ }}nC\)
Tại \(t = 0,{\rm{ }}i = {I_0}cos{\varphi _i} = {I_0} = > {\rm{ }}{\varphi _i} = {\rm{ }}0\)
=>\({\varphi _u} = {\varphi _i} - \frac{\pi }{2} = - \frac{\pi }{2}\)\(\)
\( \to q = 2c{\rm{os(1}}{{\rm{0}}^7}t - \frac{\pi }{2}){\rm{ }}nC\)
5. Dạng 5. Thời điểm điện tích trện tụ biến thiên từ q1 đến q2
(Tương tự bài toán xác định thời gian vật chuyển động từ vị trí có li độ x1 đến vị trí có li độ x2 trong dao động điều hòa)
Phương pháp: Sử dụng vòng tròn lượng giác và công thức \(\Delta t = \frac{{\Delta \varphi }}{\omega }\)
Chương IV. Dao động và sóng điện từ
Chương 6. Bằng chứng và cơ chế tiến hóa
ĐỊA LÍ KINH TẾ
Chương 9: Hóa học và vấn đề phát triển kinh tế, xã hội và môi trường
Chương 3: Amin, amino axit và protein