**Câu 8:** Để tính vận tốc trôi của electron trong dây dẫn, ta sử dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Trong đó:
- \( I \) là cường độ dòng điện (2,8 A),
- \( n \) là mật độ electron (8,5 x \( 10^{28} \) electron/m³),
- \( A \) là diện tích tiết diện của dây dẫn (3,2 x \( 10^{-6} \) m²),
- \( e \) là điện tích của một electron (khoảng \( 1,6 x 10^{-19} \) C),
- \( v \) là vận tốc trôi của electron.
Thay các giá trị vào công thức trên:
\[
2,8 = (8,5 \times 10^{28}) \cdot (3,2 \times 10^{-6}) \cdot (1,6 \times 10^{-19}) \cdot v
\]
Giải phương trình này để tìm \( v \):
\[
v = \frac{2,8}{(8,5 \times 10^{28}) \cdot (3,2 \times 10^{-6}) \cdot (1,6 \times 10^{-19})}
\]
Tính toán:
\[
v \approx \frac{2,8}{(8,5 \times 3,2 \times 1,6) \times 10^{28-6-19}}
\]
\[
= \frac{2,8}{43,2 \times 10^{3}} \approx 6,48 \times 10^{-5} m/s
\]
**Kết quả:** Vận tốc trôi của electron là khoảng \( 6,48 \times 10^{-5} m/s \).
---
**Câu 9:** Gọi diện tích tiết diện của dây dẫn (1) là \( A_1 \) và dây dẫn (2) là \( A_2 \) với \( A_1 = 3A_2 \).
Vận tốc trôi của electron được tính theo công thức:
\[
v = \frac{I}{n \cdot A \cdot e}
\]
Do đó, tỉ số vận tốc trôi của electron trong hai dây dẫn:
\[
\frac{v_1}{v_2} = \frac{I/A_1}{I/A_2} = \frac{A_2}{A_1} = \frac{1}{3}
\]
**Kết quả:** Tỉ số tốc độ trôi của electron trong hai dây dẫn là \( \frac{1}{3} \).
---
**Câu 10:**
a) Tính điện lượng do dòng điện (1) đi qua tiết diện trong khoảng thời gian từ \( t_1 = 2s \) đến \( t_2 = 4s \). Nếu cường độ dòng điện không đổi là \( I \):
\[
Q_1 = I \cdot (t_2 - t_1) = I \cdot (4 - 2) = I \cdot 2
\]
Giả sử \( I = cường độ dòng điện \) mà đề bài không cung cấp.
b) Tương tự với dòng điện (2):
\[
Q_2 = I \cdot (t_4 - t_3) = I \cdot (6 - 3) = I \cdot 3
\]
Cần biết giá trị cường độ dòng điện để tính điện lượng cụ thể.
---
**Câu 11:** Tính tốc độ dịch chuyển của electron trong dây nhôm hình trụ.
Sử dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Diện tích tiết diện \( A \) tính bằng:
\[
A = \pi \left(\frac{d}{2}\right)^2 = \pi \left(1 \times 10^{-3}\right)^2 \approx 3,14 \times 10^{-6} m^2
\]
Thay vào công thức:
\[
2 = (1,8 \times 10^{29}) \cdot (3,14 \times 10^{-6}) \cdot (1,6 \times 10^{-19}) \cdot v
\]
Giải phương trình này để tìm \( v \):
\[
v = \frac{2}{(1,8 \times 10^{29}) \cdot (3,14 \times 10^{-6}) \cdot (1,6 \times 10^{-19})}
\]
Sau khi tính toán:
**Kết quả:** Vận tốc dịch chuyển của electron trong dây nhôm khoảng \( 1,07 \times 10^{-3} m/s \).
---
**Câu 12:** Cường độ dòng điện \( I = 2 A \) và thời gian \( t = 6 s \).
Số electron dịch chuyển qua tiết diện thẳng:
\[
Q = I \cdot t = 2 \cdot 6 = 12 C
\]
Số electron \( n \) tính bằng:
\[
n = \frac{Q}{e} = \frac{12}{1,6 \times 10^{-19}} \approx 7,5 \times 10^{19} (e/s)
\]
**Kết quả:** Số electron dịch chuyển qua tiết diện thẳng là \( 7,5 \times 10^{19} (e/s) \).
---
**Câu 13:** Tính mật độ electron dẫn trong dây.
Sử dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Với \( d = 1,5 mm = 1,5 \times 10^{-3} m \):
\[
A = \pi \left(\frac{1,5 \times 10^{-3}}{2}\right)^2 \approx 1,77 \times 10^{-6} m^2
\]
Tính mật độ electron:
\[
4,2 = n \cdot (1,77 \times 10^{-6}) \cdot (1,6 \times 10^{-19}) \cdot (2,5 \times 10^{-3})
\]
Giải để tìm \( n \).
**Kết quả:** Giá trị \( n \) là khoảng \( 4,2 \times 10^{26} ~electron/m^3 \).
---
**Câu 14:** Tính vận tốc trôi của electron trong dây.
Sử dụng công thức tương tự và diện tích tiết diện:
\[
A = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^2 \approx 3,14 \times 10^{-6} m^2
\]
Tính vận tốc:
\[
5 = (8,5 \times 10^{28}) \cdot (3,14 \times 10^{-6}) \cdot (1,6 \times 10^{-19}) \cdot v
\]
Giải để tìm \( v \).
**Kết quả:** Vận tốc trôi của electron là khoảng \( 1,84 \times 10^{-3} m/s \).
---
**Câu 15:** Tính cường độ dòng điện qua dây.
Sử dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Với \( d = 1,2 mm = 1,2 \times 10^{-3} m \):
\[
A = \pi \left(\frac{1,2 \times 10^{-3}}{2}\right)^2 \approx 1,13 \times 10^{-6} m^2
\]
Tính cường độ:
\[
I = (8,0 \times 10^{28}) \cdot (1,13 \times 10^{-6}) \cdot (1,6 \times 10^{-19}) \cdot (1,5 \times 10^{-3})
\]
**Kết quả:** Cường độ dòng điện qua dây là khoảng \( 2,17 A \).
---
**Câu 16:** Tính cường độ dòng điện qua dây.
Áp dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Diện tích tiết diện:
\[
A = \pi \left(\frac{1 \times 10^{-3}}{2}\right)^2 \approx 7,85 \times 10^{-7} m^2
\]
Tính cường độ:
\[
I = (8,5 \times 10^{28}) \cdot (7,85 \times 10^{-7}) \cdot (1,6 \times 10^{-19}) \cdot (1,0 \times 10^{-3})
\]
**Kết quả:** Cường độ dòng điện qua dây là khoảng \( 3,14 A \).
---
**Câu 17:** Tính diện tích tiết diện của dây.
Sử dụng công thức:
\[
I = n \cdot A \cdot e \cdot v
\]
Tính \( A \):
\[
A = \frac{I}{n \cdot e \cdot v}
\]
Sau khi thay các giá trị vào:
\[
A = \frac{2}{(1,0 \times 10^{29}) \cdot (1,6 \times 10^{-19}) \cdot (2,0 \times 10^{-3})}
\]
**Kết quả:** Diện tích tiết diện của dây khoảng \( 6,25 \times 10^{-7} m^2 \).