18/06/2025


18/06/2025
18/06/2025
Bài 1
a)
$=-\frac{4}{7} - \frac{5}{13} - \frac{39}{25} + \frac{(-1) \cdot (-5)}{42 \cdot 6}$
$= -\frac{4}{7} - \frac{5}{13} - \frac{39}{25} + \frac{5}{252}$
$= \left(-\frac{4}{7} + \frac{5}{252}\right) - \frac{5}{13} - \frac{39}{25}$
$= \left(-\frac{4 \cdot 36}{252} + \frac{5}{252}\right) - \frac{5}{13} - \frac{39}{25}$
$= \frac{-144 + 5}{252} - \frac{5}{13} - \frac{39}{25}$
$= -\frac{139}{252} - \frac{5}{13} - \frac{39}{25}$
$= \frac{-139 \cdot 325 - 5 \cdot 6300 - 39 \cdot 3276}{81900}$
$= \frac{-45175 - 31500 - 127764}{81900}$
$= \frac{-204439}{81900}$
b)
$= \frac{2}{9} \cdot \left[ \frac{-4}{25} \cdot \left( \frac{1}{\sqrt{25}} - \frac{2}{15} \right) + 1\frac{2}{3} \right] - \frac{-5}{27}$
$= \frac{2}{9} \cdot \left[ \frac{-4}{25} \cdot \left( \frac{1}{5} - \frac{2}{15} \right) + \frac{5}{3} \right] + \frac{5}{27}$
$= \frac{2}{9} \cdot \left[ \frac{-4}{25} \cdot \left( \frac{3}{15} - \frac{2}{15} \right) + \frac{5}{3} \right] + \frac{5}{27}$
$= \frac{2}{9} \cdot \left[ \frac{-4}{25} \cdot \frac{1}{15} + \frac{5}{3} \right] + \frac{5}{27}$
$= \frac{2}{9} \cdot \left( \frac{-4}{375} + \frac{625}{375} \right) + \frac{5}{27}$
$= \frac{2}{9} \cdot \frac{621}{375} + \frac{5}{27}$
$= \frac{2 \cdot (9 \cdot 69)}{9 \cdot 375} + \frac{5}{27}$
$= \frac{138}{375} + \frac{5}{27}$
$= \frac{46}{125} + \frac{5}{27}$
$= \frac{46 \cdot 27 + 5 \cdot 125}{3375}$
$= \frac{1242 + 625}{3375}$
$= \frac{1867}{3375}$
c)
$= -\frac{5}{9} \cdot \frac{3}{11} + \frac{-13}{18} \cdot \frac{3}{11} + \frac{3}{11} \cdot 1$
$= \frac{3}{11} \cdot \left( -\frac{5}{9} - \frac{13}{18} + 1 \right)$
$= \frac{3}{11} \cdot \left( -\frac{10}{18} - \frac{13}{18} + \frac{18}{18} \right)$
$= \frac{3}{11} \cdot \frac{-10 - 13 + 18}{18}$
$= \frac{3}{11} \cdot \frac{-5}{18}$
$= \frac{3 \cdot (-5)}{11 \cdot 3 \cdot 6}$
$= \frac{-5}{66}$
Bài 2
a) $(\frac{2}{3}x - \frac{4}{9}) (\frac{1}{2} + \frac{-3}{7} : x) = 0$
Điều kiện: $x \neq 0$
Trường hợp 1:
$\frac{2}{3}x - \frac{4}{9} = 0$
$\frac{2}{3}x = \frac{4}{9}$
$x = \frac{4}{9} : \frac{2}{3}$
$x = \frac{2}{3}$ (thỏa mãn điều kiện)
Trường hợp 2:
$\frac{1}{2} + \frac{-3}{7} : x = 0$
$\frac{-3}{7} : x = -\frac{1}{2}$
$x = \frac{-3}{7} : \left(-\frac{1}{2}\right)$
$x = \frac{6}{7}$ (thỏa mãn điều kiện)
Vậy $x \in \left\{\frac{2}{3}; \frac{6}{7}\right\}$.
b) $(\frac{1}{2} - \frac{1}{3}x)^2 = \frac{25}{4}$
$(\frac{1}{2} - \frac{1}{3}x)^2 = \left(\frac{5}{2}\right)^2$
Trường hợp 1:
$\frac{1}{2} - \frac{1}{3}x = \frac{5}{2}$
$\frac{1}{3}x = \frac{1}{2} - \frac{5}{2}$
$\frac{1}{3}x = -2$
$x = -6$
Trường hợp 2:
$\frac{1}{2} - \frac{1}{3}x = -\frac{5}{2}$
$\frac{1}{3}x = \frac{1}{2} - \left(-\frac{5}{2}\right)$
$\frac{1}{3}x = 3$
$x = 9$
Vậy $x \in \{-6; 9\}$.
c) $\frac{1}{2}\sqrt{x} - \frac{1}{3} = 1$
Điều kiện: $x \ge 0$
$\frac{1}{2}\sqrt{x} = 1 + \frac{1}{3}$
$\frac{1}{2}\sqrt{x} = \frac{4}{3}$
$\sqrt{x} = \frac{4}{3} : \frac{1}{2}$
$\sqrt{x} = \frac{8}{3}$
$x = \left(\frac{8}{3}\right)^2$
$x = \frac{64}{9}$ (thỏa mãn điều kiện)
Vậy $x = \frac{64}{9}$.
d) $2x^2 - 18 = 0$
$2x^2 = 18$
$x^2 = 9$
$x = 3$ hoặc $x = -3$.
Vậy $x \in \{3; -3\}$.
e) $\frac{x+1}{4} = \frac{x+2}{3}$
$3(x+1) = 4(x+2)$
$3x + 3 = 4x + 8$
$4x - 3x = 3 - 8$
$x = -5$
Vậy $x = -5$.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
17/12/2025
Top thành viên trả lời