Cho tam giác ABC, gọi D, E lần lượt là trung điểm của AC, AB. Trên tia đối của tia DB lấy M sao cho DM = DB; trên tia đối của tia EC lấy N sao cho EN = EC. Chứng minh A là trung điểm của MN?

ADS
thumb up 1
thumb down
Trả lời câu hỏi của Bao Tien
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
ADS
CÂU TRẢ LỜI
avatar
Timi

23/07/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Để chứng minh A là trung điểm của MN, ta thực hiện các bước sau: 1. Xác định các điểm trung điểm: - D là trung điểm của AC, do đó AD = DC. - E là trung điểm của AB, do đó AE = EB. 2. Xác định các điểm M và N: - Trên tia đối của tia DB, lấy M sao cho DM = DB. - Trên tia đối của tia EC, lấy N sao cho EN = EC. 3. Chứng minh A là trung điểm của MN: - Xét tam giác ABD, vì D là trung điểm của AC và M nằm trên tia đối của DB với DM = DB, nên M là điểm đối xứng của B qua D. Do đó, đoạn thẳng AM là đường trung bình của tam giác ABD, và AM = MD. - Tương tự, xét tam giác AEC, vì E là trung điểm của AB và N nằm trên tia đối của EC với EN = EC, nên N là điểm đối xứng của C qua E. Do đó, đoạn thẳng AN là đường trung bình của tam giác AEC, và AN = NE. 4. Kết luận: - Từ hai kết quả trên, ta có AM = MD và AN = NE. Do đó, A là trung điểm của đoạn thẳng MN. Vậy, A là trung điểm của MN.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi