Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Điều kiện xác định: \( x \neq \pm \frac{1}{2} \)
Ta có phương trình:
\[ \frac{2}{2x+1} + \frac{x}{4x^2-1} = \frac{7}{2x-1} \]
Nhận thấy rằng \( 4x^2 - 1 = (2x - 1)(2x + 1) \), ta quy đồng mẫu số chung là \( (2x - 1)(2x + 1) \):
\[ \frac{2(2x - 1)}{(2x - 1)(2x + 1)} + \frac{x}{(2x - 1)(2x + 1)} = \frac{7(2x + 1)}{(2x - 1)(2x + 1)} \]
Kết hợp các phân số:
\[ \frac{2(2x - 1) + x}{(2x - 1)(2x + 1)} = \frac{7(2x + 1)}{(2x - 1)(2x + 1)} \]
Bỏ mẫu số chung:
\[ 2(2x - 1) + x = 7(2x + 1) \]
Phân phối và rút gọn:
\[ 4x - 2 + x = 14x + 7 \]
\[ 5x - 2 = 14x + 7 \]
Chuyển các hạng tử chứa \( x \) sang một vế và các hằng số sang vế kia:
\[ 5x - 14x = 7 + 2 \]
\[ -9x = 9 \]
Chia cả hai vế cho -9:
\[ x = -1 \]
Kiểm tra điều kiện xác định \( x \neq \pm \frac{1}{2} \), ta thấy \( x = -1 \) thỏa mãn điều kiện này.
Vậy nghiệm của phương trình là:
\[ x = -1 \]
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
0
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.