
2 giờ trước
25 phút trước
Gọi số lượng xe to cần dùng là $x$ (chiếc). Điều kiện: $x$ phải là số nguyên dương ($x > 0$).
Khi đó, số lượng xe nhỏ cần dùng sẽ là: $x + 2$ (chiếc).
Số chỗ ngồi của mỗi xe to là: $\frac{180}{x}$ (chỗ).
Số chỗ ngồi của mỗi xe nhỏ là: $\frac{180}{x+2}$ (chỗ).
Vì mỗi xe to có nhiều hơn xe nhỏ 15 chỗ, ta có phương trình: $\frac{180}{x} - \frac{180}{x+2} = 15$
$\frac{12}{x} - \frac{12}{x+2} = 1$
$\frac{12(x+2) - 12x}{x(x+2)} = 1$
$12x + 24 - 12x = x(x+2)$
$24 = x^2 + 2x$
$x^2 + 2x - 24 = 0$
$(x-4)(x+6) = 0$
$x = 4$ (Thỏa mãn điều kiện) hoặc $x = -6$ (Loại vì số xe không thể âm)
Vậy: Số xe to cần dùng là: 4 xe.
Số xe nhỏ cần dùng là: $4 + 2 =$ 6 xe.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
19/12/2025
Top thành viên trả lời