Đề bài
Chứng minh các dãy số \(\left( {\frac{3}{5}{{.2}^n}} \right),{\rm{ }}\left( {\frac{5}{{{2^n}}}} \right),{\rm{ }}{\left( { - \frac{1}{2}} \right)^n}\) là các cấp số nhân.
Phương pháp giải - Xem chi tiết
Chứng minh \(\dfrac{{{u_{n + 1}}}}{{{u_n}}}\) là một số không đổi.
Lời giải chi tiết
+) Ta có: \({u_n} = \dfrac{3}{5}{.2^n} \Rightarrow {u_1} = \dfrac{3}{5}{.2^1} = \dfrac{6}{5}\)
Với mọi \(∀n\in {\mathbb N}^*\), ta có:
\({u_{n + 1}} = \dfrac{3}{5}{.2^{n + 1}} \) \(\Rightarrow \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{5}{{.2}^{n + 1}}}}{{\dfrac{3}{5}{{.2}^n}}} \) \(= \dfrac{{{2^{n + 1}}}}{{{2^n}}} = \dfrac{{{2^n}.2}}{{{2^n}}} = 2\) (không đổi)
Vậy dãy số đã cho là một cấp số nhân với \(u_1= \dfrac{6}{5}\) và \(q = 2\).
+) Ta có: \({u_n} = \dfrac{5}{{{2^n}}} \Rightarrow {u_1} = \dfrac{5}{{{2^1}}} = \dfrac{5}{2}\)
Với mọi \(∀ n\in {\mathbb N}^*\), ta có:
\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{5}{{{2^{n + 1}}}}}}{{\dfrac{5}{{{2^n}}}}} = \dfrac{5}{{{2^{n + 1}}}}:\dfrac{5}{{{2^n}}}\) \( = \dfrac{5}{{{2^{n + 1}}}}.\dfrac{{{2^n}}}{5} = \dfrac{{{2^n}}}{{{2^{n + 1}}}} = \dfrac{{{2^n}}}{{{2^n}.2}} = \dfrac{1}{2} \) (không đổi)
Vậy dãy số đã cho là một cấp số nhân với \(u_1= \dfrac{5}{2}\) và \(q= \dfrac{1}{2}\)
+) Ta có: \({u_n} = {\left( { - \dfrac{1}{2}} \right)^n} \Rightarrow {u_1} = {\left( { - \dfrac{1}{2}} \right)^1} = - \dfrac{1}{2}\)
Với mọi \(∀ n\in {\mathbb N}^*\), ta có:
\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{{\left( { - \dfrac{1}{2}} \right)}^{n + 1}}}}{{{{\left( { - \dfrac{1}{2}} \right)}^n}}} = \dfrac{{{{\left( { - \dfrac{1}{2}} \right)}^n}.\left( { - \dfrac{1}{2}} \right)}}{{{{\left( { - \dfrac{1}{2}} \right)}^n}}}= - \dfrac{1}{2} \) (không đổi)
Vậy dãy số đã cho là cấp số nhân với \(u_1= \dfrac{-1}{2}\) và \(q= \dfrac{-1}{2}\).
SBT Toán 11 - Cánh Diều tập 2
Tải 20 đề kiểm tra 15 phút - Chương III - Hóa học 11
SBT Ngữ văn 11 - Chân trời sáng tạo tập 1
Unit 3: A Party - Một bữa tiệc
Chủ đề 3: Phối hợp kĩ thuật đánh cầu thấp tay
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11