Đề bài
Cho tam giác ABC. Vẽ đường tròn (O) đi qua B và C và tâm đường tròn nằm trên AC. Khi nào thì tâm đường tròn (O) trùng với điểm A?
Phương pháp giải - Xem chi tiết
+) Chứng minh điểm \(O\) thuộc trung trực của \(BC\), dựa vào giả thiết suy ra cách dựng điểm \(O\).
+) Chứng minh khi \(O \equiv A\) thì \(A\) thuộc trung trực của \(BC\), từ đó suy ra tính chất của tam giác \(ABC\).
Lời giải chi tiết
Do \(B,C \in \left( O \right) \Rightarrow OB = OC \Rightarrow \) Điểm \(O\) thuộc trung trực của \(BC\).
Gọi \(d\) là đường trung trực của đoạn thẳng \(BC \Rightarrow O \in d\).
Lại có \(O \in AC\,\,\left( {gt} \right) \Rightarrow O = d \cap AC\).
Khi \(O \equiv A \Rightarrow A \in d \Rightarrow AB = AC\), khi đó tam giác \(ABC\) trở thành tam giác cân tại \(A\).
Vậy điều kiện để \(O \equiv A\) là tam giác \(ABC\) là tam giác cân tại \(A\).
Bài 8:Năng động, sáng tạo
Bài 31
Đề thi vào 10 môn Văn Tuyên Quang
Đề thi vào 10 môn Văn Bình Dương
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 9