Bài 1 trang 19 SGK Hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình vuông \(ABCD\) tâm \(O\) (h.1.38)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm ảnh của điểm \(C\) qua phép quay tâm \(A\) góc \( 90^{\circ}\)

Phương pháp giải:

Xác định ảnh:

+) Nối \(C\) với \(A\), vẽ tia \(At\) (về phía ngược chiều kim đồng hồ so với tia \(AC\)) sao cho \(\widehat {CAt} = 90^0.\)

+) Trên tia \(At\), lấy điểm \(E\) sao cho \(AC = AE.\)

Chỉ ra vị trí của điểm \(E.\)

Cách khác: Lấy \(E\), chứng tỏ \(E\) là ảnh của \(C\) qua phép quay đó.

Lời giải chi tiết:

Gọi \(E\) là điểm đối xứng với \(C\) qua tâm \(D\). Ta có: tam giác ACE vuông cân tại A.

\( \Rightarrow \left\{ \begin{array}{l}
AC = AE\\
\left( {AC,AE} \right) = {90^0}
\end{array} \right.\)

Khi đó \({Q_{(A,90^{\circ})}}^{}\) (C) = \(E\)

LG b

Tìm ảnh của đường thẳng \(BC\) qua phép quay tâm \(O\) góc \( 90^{\circ}\)

Lời giải chi tiết:

\(\left\{ \begin{array}{l}
OC = OB\\
\left( {OB,OC} \right) = {90^0}
\end{array} \right. \) \(\Rightarrow {Q_{\left( {O,{{90}^0}} \right)}}\left( B \right) = C\)

\(\left\{ \begin{array}{l}
OD = OC\\
\left( {OC,OD} \right) = {90^0}
\end{array} \right. \) \(\Rightarrow {Q_{\left( {O,{{90}^0}} \right)}}\left( C \right) = D\)

Vậy ảnh của đường thẳng \(BC\) qua phép quay tâm \(O\) góc \( 90^{\circ}\) là đường thẳng \(CD\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved