PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 1 trang 37 sgk toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

Mỗi khẳng định sau đúng hay sai? Vì sao?

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

LG a.

\((-2) + 3 ≥ 2\); 

Phương pháp giải:

Tính giá trị của từng biểu thức, sau đó so sánh giá trị của chúng và cuối cùng kết luận khẳng định đó đúng hay sai.

Lời giải chi tiết:

Ta tính: \((-2)+3=1\).

So sánh hai số \(1\) và \(2\), ta có \(1 \ge 2\) là khẳng định sai.

Vậy \((-2) + 3 ≥ 2\) là khẳng định sai.

LG b.

\(-6 ≤ 2.(-3)\);

Phương pháp giải:

Tính giá trị của từng biểu thức, sau đó so sánh giá trị của chúng và cuối cùng kết luận khẳng định đó đúng hay sai.

Lời giải chi tiết:

Ta tính: \(2.(-3)=-6\)

So sánh hai số \(-6\) và \(-6\), ta có \( - 6 \le  - 6\) khẳng định đúng.

Vậy \(-6 ≤ 2.(-3)\) là khẳng định đúng.

LG c.

\(4 + (-8) < 15 + (-8)\);

Phương pháp giải:

Cách 1: Tính giá trị của từng biểu thức, sau đó so sánh giá trị của chúng và cuối cùng kết luận khẳng định đó đúng hay sai.

Cách 2: Dựa vào tính chất về liên hệ giữa thứ tự và phép cộng suy ra kết quả so sánh hai biểu thức, và cuối cùng kết luận khẳng định đó đúng hay sai.

Lời giải chi tiết:

Cách 1:

Ta tính: \( 4 + (-8) = -4\) và \( 15 + (-8) = 7\)

So sánh hai số \(-4\) và \(7\), ta có \(- 4 < 7\) khẳng định đúng.

Vậy \(4 + (-8) < 15 + (-8)\) là khẳng định đúng.

Cách 2:

So sánh hai số \(4\) và \(15\), ta có \(4<15\).

Cộng số \(-8\) vào hai vế của \(4<15\), ta có \(4 + (-8) < 15 + (-8)\)

Vậy \(4 + (-8) < 15 + (-8)\) là khẳng định đúng.

LG d.

\(x^2+ 1 ≥ 1\).

Phương pháp giải:

Dựa vào tính chất về liên hệ giữa thứ tự và phép cộng suy ra kết quả so sánh hai biểu thức, và cuối cùng kết luận khẳng định đó đúng hay sai.

Lời giải chi tiết:

Với số \(x\) bất kì, ta có \({x^2} \geqslant 0\) nên \( {x^2} + 1 \geqslant   1 \)

Vậy \({x^2} + 1 \geqslant 1\) là khẳng định  đúng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved