PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 1 trang 99 sgk Toán 9 - tập 1

Đề bài

Cho hình chữ nhật \(ABCD\) có \(AB=12cm,\ BC=5cm\). Chứng minh rằng bốn điểm \(A,\ B,\ C,\ D\) thuộc cùng một đường tròn. Tính bán kính của đường tròn đó. 

Phương pháp giải - Xem chi tiết

+) Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.

+) Sử dụng tính chất của hình chữ nhật: \(ABCD\) là hình chữ nhật, hai đường chéo cắt nhau tại \(O\) thì ta có \(OA=OB=OC=OD=\dfrac{AC}{2}=\dfrac{BD}{2}\). 

+) Định lí Pytago: \(\Delta{ABC}\) vuông tại \(C\) thì \(BC^2=AB^2+AC^2.\)

Lời giải chi tiết

 

 

Gọi \(O\) là giao điểm hai đường chéo của hình chữ nhật, ta có \(OA = OB = OC = OD \) (tính chất) nên bốn điểm này cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA\).

Xét tam giác \(ABC\) vuông tại \(B\), áp dụng định lí Pytago, ta có:

\(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\)

\(\Rightarrow AC=\sqrt{169}=13\,cm\) 

\(\Rightarrow R=OA=\dfrac{13}{2}=6,5\,cm\)

Vậy bán kính của đường tròn là: \(R=6,5\,cm.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved