Bài 10 trang 49 SGK Hình học lớp 12

Đề bài

Cho hình chóp \(S.ABC\) có bốn đỉnh đều nằm trên một mặt cầu, \(SA = a, SB = b, SC = c\) và ba cạnh \(SA, SB, SC\) đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó.

Phương pháp giải - Xem chi tiết

+) Công thức tính diện tích mặt cầu bán kính \(r\) là: \(S=4 \pi r^2.\)

+) Công thức tính thể tích mặt cầu bán kính \(r\) là: \(V=\dfrac{4}{3} \pi r^3.\)

Lời giải chi tiết

Gọi \(I\) là tâm mặt cầu ngoại tiếp hình chóp tam giác \(S.ABC\). Hạ \(IJ\) vuông góc \((SAB)\), vì \(I\) cách đều \(3\) điểm \(S, A, B\) nên \(J\) cũng cách đều \(3\) điểm \(S, A, B\).

Vì tam giác \(SAB\) vuông đỉnh \(S\) nên \(J\) là trung điểm của \(AB\).

Ta có \(SJ ={1 \over 2}AB = {1 \over 2}\sqrt {{a^2} + {b^2}}\)

Do \(SC\) vuông góc \((SAB)\) nên \(IJ // SC\).

Gọi \(H\) là trung điểm \(SC\), ta có \(SC=SI\) nên \(IH \bot SC \).

Xét tứ giác \(SHIJ\) ta có: \( \widehat {SHI}= 90 ^0\) do \(IH \bot SC \); 

\( \widehat {HSJ}= 90 ^0\) do \(SC \bot (SAB) \) chứa \(SJ\);

\(\widehat {IJS}\) do \(IJ \bot (SAB) \) chứa \(SJ\)

Suy ra tứ giác \(SHIJ\) là hình chữ nhật.

\(\rightarrow SH = IJ = {c \over 2}\).

Do vậy, \(I{S^2} = I{J^2} + S{J^2} = {{({a^2} + {b^2} + {c^2})} \over 4}\) và  bán kính hình cầu ngoại tiếp \(S.ABC\) là 

\(R = IS = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)

Diện tích mặt cầu là:

\(S = 4\pi {R^2} = \pi ({a^2} + {b^2} + {c^2})\)

Thể tích khối cầu là :
\(V = {4 \over 3}\pi {R^3} = {1 \over 6}\pi {\left( {{a^2} + {b^2} + {c^2}} \right)^{{3 \over 2}}}\).
Cách khác tìm tâm mặt cầu ngoại tiếp S.ABC
Phương pháp:
Bước 1: Dựng trục đường tròn ngoại tiếp tam giác SAB (Đường thẳng vuông góc với mặt phẳng (SAB) tại tâm đường tròn)
Bước 2: Dựng mặt phẳng trung trực của SC.
Bước 3. Tâm mặt cầu ngoại tiếp S.ABC là giao của trục và mặt phẳng trên
Giải chi tiết
Gọi \(\Delta\) là đường trục đường tròn ngoại tiếp tam giác SAB. Khi đó \(\Delta\) đi qua trung điểm J của AB và vuông góc với (SAB). Ta lại có \(SC \bot \left( {SAB} \right)\). 

\( \Rightarrow \Delta //SC\)

Do đó mọi điểm trên \(\Delta\) cách đều S,A,B. (Theo bài 3)

Dựng mặt phẳng trung trực của SC cắt \(Delta\) tại I. 

Khi đó ta có: \(IS=IC\).

\(I \in \Delta \Rightarrow IA=IS=IB\). Vậy I là tâm đường tròn ngoại tiếp S.ABC

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved