PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 10 trang 63 - Sách giáo khoa toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

\(∆ABC\) có đường cao \(AH\). Đường thẳng \(d\) song song với \(BC\), cắt các cạnh \(AB, AC\) và đường cao \(AH\) theo thứ tự tại các điểm \(B', C'\) và \(H'\)(h.16)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

LG a.

LG a.

Chứng minh rằng:

\(\dfrac{AH'}{AH}= \dfrac{B'C'}{BC}\).

Phương pháp giải:

Áp dụng: Hệ quả của định lý TaLet.

Lời giải chi tiết:

Vì \(B'C' // BC\) \( \Rightarrow \dfrac{B'C'}{BC} = \dfrac{AB'}{AB}\)   (1) (theo hệ quả định lý TaLet)

Trong \(∆ABH\) có \(B'H' // BH\) \( \Rightarrow \dfrac{AH'}{AH} = \dfrac{AB'}{AB}\)  (2) (theo hệ quả định lý TaLet)

Từ (1) và (2) \( \Rightarrow \dfrac{B'C'}{BC} = \dfrac{AH'}{AH}\)

LG b.

LG b.

Áp dụng: Cho biết \(AH' = \dfrac{1}{3} AH\) và diện tích \(∆ABC\) là \(67,5\) cm2

Tính diện tích \(∆AB'C'\).

Phương pháp giải:

Áp dụng: Hệ quả của định lý TaLet và công thức tính diện tích tam giác.

Lời giải chi tiết:

\(B'C' // BC\) mà \(AH ⊥ BC\) nên \(AH' ⊥ B'C'\) hay \(AH'\) là đường cao của \(∆AB'C'\).

 Giả thiết: \(AH' = \dfrac{1}{3} AH\).

Áp dụng kết quả câu a) ta có:

\(\dfrac{B'C'}{BC}= \dfrac{AH'}{AH} = \dfrac{1}{3}\) 

\(\Rightarrow  B'C' = \dfrac{1}{3} BC\)

\(\eqalign{
& {S_{AB'C'}} = {1 \over 2}AH'.B'C' \cr&\;\;\;\;\;\;\;\;\;\;\;= {1 \over 2}.{1 \over 3}AH.{1 \over 3}BC \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;\;= {1 \over 9}.\left( {{1 \over 2}AH.BC} \right) \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \;\;= {1 \over 9}.{S_{ABC}}\cr&\;\;\;\;\;\;\;\;\;\;\; = {1 \over 9}.67,5 = 7,5\,\,c{m^2} \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved