1. Tổng ba góc trong một tam giác
2. Hai tam giác bằng nhau
3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Đề bài
a) Tính độ cao của con diều so với mặt đất (h.18a).
b) Tính chiều dài cần cẩu AB (h.18b).
Lời giải chi tiết
a) Gọi độ cao của con diều so với tay người thả là h (m).
Áp dụng định lý Pythagore trong tam giác vuông ta có: \({h^2} + {25^2} = {50^2}.\)
\(\Rightarrow {h^2} = {50^2} - {25^2} = 2500 - 625 = 1875\)
Mà h > 0 do đó \(h = \sqrt {1875} \approx 43,3 (m)\)
Độ cao của con diều so với mặt đất là: \(43,3 + 1 = 44,3 (m).\)
b) \(AC = AD - CD = 5 - 2 = 3(m)\)
Áp dụng định lý Pythagore cho tam giác ABC vuông tại C ta có: \(A{B^2} = A{C^2} + B{C^2}\)
Do đó: \(A{B^2} = {3^2} + {4^2} = 9 + 16 = 25\)
Mà AB > 0 nên \(AB = \sqrt {25} = 5(m).\) Vậy chiều dài của cần cẩu là 5m.
Unit 7. Music
Đề thi giữa kì 1
Toán 7 tập 2 - Kết nối tri thức với cuộc sống
Chương II. Phân tử. Liên kết hóa học
Unit 6: Survival
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7