Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) nằm trong hai mặt phẳng khác nhau. Gọi \(M\) là điểm di động trên đoạn \(AB\). Qua \(M\) vẽ mặt phẳng \((\alpha)\) song song với \((SBC)\)
Thiết diện tạo bởi \((\alpha)\) và hình chóp \(S.ABCD\) là hình gì?
(A) Tam giác (B) Hình bình hành
(C) Hình thang (D) Hình vuông
Phương pháp giải - Xem chi tiết
Xác định thiết diện, sử dụng tính chất: Nếu ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.
Lời giải chi tiết
Trong \((ABCD)\) qua \(M\) kẻ \(MN // BC\)
Trong \((SAB)\) qua \(M\) kẻ \(MQ // SB\)
Trong \((SCD)\) qua \(N\) kẻ \(NP // SC.\)
Từ đó ta có thiết diện của hình chóp khi cắt bởi mặt phẳng \((\alpha)\) là tứ giác \(MNPQ\).
Ta có \(\left\{ \begin{array}{l}\left( {MNPQ} \right) \cap \left( {SAD} \right) = PQ\\\left( {MNPQ} \right) \cap \left( {ABCD} \right) = MN\\\left( {ABCD} \right) \cap \left( {SAD} \right) = AD\end{array} \right.\) \( \Rightarrow PQ//MN//AD\)
Vậy \(MNPQ\) là hình thang.
Chọn đáp án C.
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương V - Hóa học 11
Unit 6: Transitions
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Unit 5: Cities and education in the future
1. Bài 1: Kĩ thuật đá móc cầu bằng mu bàn chân (cúp ngược)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11