PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 12 trang 15 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\\left( {{a^2} + 1} \right)x + 6y = 2a\end{array} \right.\) trong mỗi trường hợp sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

\(a = -1\)       

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a =  - 1,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y =  - 2\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y =  - 1\end{array} \right.\)

Từ đó, ta thấy ngay hệ phương trình vô nghiệm

LG b

LG b

\(a = 0\)        

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a = 0,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\x + 6y = 0\end{array} \right.\)

Từ phương trình thứ nhất ta có \(x = 1 - 3y\)

Thế \(x\) trong phương trình thứ hai bởi \(x = 1 - 3y\), ta được

\(1 - 3y + 6y = 0 \Leftrightarrow 3y =  - 1 \Leftrightarrow y =  - \dfrac{1}{3}\)

Từ đó \(x = 1 - 3.\left( { - \dfrac{1}{3}} \right) = 2\).

Vậy với \(a = 0,\) hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2; - \dfrac{1}{3}} \right)\).

LG c

LG c

\(a = 1 \)

Phương pháp giải:

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết:

Với \(a = 1\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y = 2\end{array} \right.\)  hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y = 1\end{array} \right.\)

Từ đó dễ thấy hệ phương trình có vô số nghiệm. Hơn nữa, tập nghiệm của nó chính là nghiệm của phương trình \(x + 3y = 1.\)

Do \(x + 3y = 1 \Leftrightarrow x = 1 - 3y\) nên tập nghiệm của phương trình \(x + 3y = 1\) là \(S = \left\{ {\left( {1 - 3y;y} \right)|y \in \mathbb{R}} \right\}\)

Vậy với \(a = 1,\) hệ phương trình đã cho có vô số nghiệm \(\left( {x;y} \right)\) thỏa mãn \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved