Giải các phương trình sau:
LG a
\({({{13} \over {24}})^{3x + 7}} = {({{24} \over {13}})^{2x + 3}}\)
Lời giải chi tiết:
Phương trình đã cho tương đương với
\({\left( {{{13} \over {24}}} \right)^{3x + 7}} = {\left( {{{13} \over {24}}} \right)^{ - \left( {2x + 3} \right)}}\)
\(\Leftrightarrow 3x + 7 = –2x – 3\Leftrightarrow x = –2\)
LG b
\({(4 - \sqrt {15} )^{\tan x}} + {(4 + \sqrt {15} )^{\tan x}} = 8\)
Lời giải chi tiết:
Vì \((4 - \sqrt {15} )(4 + \sqrt {15} ) = 1\) nên ta đặt \({(4 - \sqrt {15} )^{\tan x}} = t(t > 0)\) , ta được phương trình: \(t + \dfrac{1}{t} = 8 \Leftrightarrow {t^2} - 8t + 1 = 0\)
\(\Leftrightarrow \left[ {\matrix{{t = 4 + \sqrt {15} } \cr {t = 4 - \sqrt {15} } \cr} } \right.\)
+) Ứng với \(t = 4 - \sqrt {15} \) , ta có
\({(4 - \sqrt {15} )^{\tan x}} = 4 - \sqrt {15}\)
\(\Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi ,k \in Z\)
+) Ứng với \(t = 4 + \sqrt {15} \) , ta có
\({(4 - \sqrt {15} )^{\tan x}} = 4 + \sqrt {15}\)
\( \Leftrightarrow \tan x = - 1 \Leftrightarrow x = - {\pi \over 4} + k\pi ,k \in Z\)
Vậy phương trình có nghiệm \(x = {\pi \over 4} + k{\pi \over 2},k \in Z\)
LG c
\({(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x} = 13\)
Lời giải chi tiết:
Ta nhận thấy x = 3 là nghiệm của phương trình. Mặt khác, hàm số
\(f(x) = {(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x}\)
Là tổng của hai hàm số mũ với cơ số lớn hơn 1 (hai hàm số đồng biến) nên f(x) đồng biến trên R. Do đó, x = 3 là nghiệm duy nhất của phương trình.
Bài 10. Thiên nhiên nhiệt đới ẩm gió mùa (tiếp theo)
CHƯƠNG 3. DI TRUYỀN HỌC QUẦN THỂ
Tải 10 đề kiểm tra 45 phút - Chương 3 – Hóa học 12
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Hóa học lớp 12
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Vật lí lớp 12