CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

Bài 13 trang 50 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Với giá trị nào của m thì các phương trình sau có nghiệm kép? Tìm nghiệm kép đó.

a) \(2{x^2} - 2x + m = 0\)

b) \({x^2} + 3mx - m + 2 = 0\)

c) \({x^2} - (m - 2)x + 1 = 0\)

Phương pháp giải - Xem chi tiết

Điều kiện để phương trình bậc hai có nghiệm kép là: \(\Delta  = 0\left( {\Delta ' = 0} \right)\). Nghiệm kép của phương trình là \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Lời giải chi tiết

a) \(2{x^2} - 2x + m = 0\)

Ta có: \(a = 2;b' =  - 1;c = m;\Delta ' = 1 - 2m\)

Phương trình có nghiệm kép khi và chỉ khi \(\Delta ' = 0 \Leftrightarrow 1 - 2m = 0 \Leftrightarrow m = \dfrac{1}{2}\)

Với \(m = \dfrac{1}{2}\) phương trình trở thành \(2{x^2} - 2x + \dfrac{1}{2} = 0\) . Phương trình có nghiệm kép là: \({x_1} = {x_2} =  - \dfrac{{b'}}{a} = \dfrac{1}{2}\)

b) \({x^2} + 3mx - m + 2 = 0\)

Ta có: \(a = 1;b = 3m;c =  - m + 2;\)

\(\Delta  = 9{m^2} - 4\left( { - m + 2} \right) \)\(\;= 9{m^2} + 4m - 8\)

Phương trình có nghiệm kép khi và chỉ khi \(\Delta  = 0 \)

\(\Leftrightarrow 9{m^2} + 4m - 8 = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}m = \dfrac{{ - 2 + 2\sqrt {19} }}{9}\\m = \dfrac{{ - 2 - 2\sqrt {19} }}{9}\end{array} \right.\)

+) Với \(m = \dfrac{{ - 2 + 2\sqrt {19} }}{9}\) Phương trình có nghiệm kép là:\({x_1} = {x_2} =  - \dfrac{b}{{2a}} =  - \dfrac{{3m}}{2} \)\(\,=  - \dfrac{{3.\dfrac{{ - 2 + 2\sqrt {19} }}{9}}}{2} = \dfrac{{1 - \sqrt {19} }}{3}\)

+) Với \(m = \dfrac{{ - 2 - 2\sqrt {19} }}{9}\)  Phương trình có nghiệm kép là:\({x_1} = {x_2} =  - \dfrac{b}{{2a}} =  - \dfrac{{3m}}{2}\)\(\; =  - \dfrac{{3.\dfrac{{ - 2 - 2\sqrt {19} }}{9}}}{2} = \dfrac{{1 + \sqrt {19} }}{3}\)

c) \({x^2} - \left( {m - 2} \right)x + 1 = 0;\)

\(a = 1;b =  - \left( {m - 2} \right);c = 1;\)

\(\Delta  = {\left( {m - 2} \right)^2} - 4\)

Phương trình có nghiệm kép khi và chỉ khi \(\Delta  = 0 \)

\(\Leftrightarrow {\left( {m - 2} \right)^2} - 4 = 0 \)

\(\Leftrightarrow {\left( {m - 2} \right)^2} = 4 \)

\(\Leftrightarrow m - 2 =  \pm 2\)

\(\Leftrightarrow \left[ \begin{array}{l}m = 4\\m = 0\end{array} \right.\)

+) TH1: với \(m = 4\) ta có: phương trình có nghiệm kép là: \({x_1} = {x_2} = \dfrac{{m - 2}}{2} = 1\)

+) TH2: với \(m = 0\) ta có phương trình có nghiệm kép là: \({x_1} = {x_2} = \dfrac{{m - 2}}{2} =  - 1\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved