Bài 1.32 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

1. Nội dung câu hỏi

Cho tam giác ABC nội tiếp đường tròn tâm O. Các đỉnh B, C cố định còn đỉnh A thay đổi trên đường tròn đó. Vẽ hình bình hành ABCD. Chứng minh rằng điểm D luôn thuộc một đường tròn cố định.

 

2. Phương pháp giải 

Đọc kĩ yêu cầu, gợi nhớ kiến thức để thực hiện.

 

3. Lời giải chi tiết

Bài 1.32 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Vì ABCD là hình bình hành nên AD=BC.

Do B, C cố định nên vectơ BC cố định.

Khi đó ta có phép tịnh tiến theo vectơ BC biến điểm A thành điểm D. Mặt khác, A thuộc đường tròn tâm O ngoại tiếp tam giác ABC nên D thuộc đường tròn tâm O' cố định là ảnh của đường tròn tâm O qua phép tịnh tiến theo vectơ BC. Ở đó, bán kính hai đường tròn bằng nhau và O' là ảnh của O qua phép tịnh tiến theo vectơ BC được xác định bởi OO'=BC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved