PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 15 trang 117 SGK Toán 9 tập 2

Đề bài

Một hình nón được đặt vào bên  trong của một hình lập phương như hình vẽ (cạnh của hình lập phương bằng \(1\)). Hãy tính:

a) Bán kính đáy của hình nón.

b) Độ dài đường sinh.

                

Phương pháp giải - Xem chi tiết

Cho hình nón có chiều cao \(h,\) bán kính đáy \(r\) và đường sinh \(l.\) Khi đó ta có: \(l^2=h^2+r^2.\)

Lời giải chi tiết

 

a) Có đường tròn đáy của hình nón nội tiếp trong hình vuông là một mặt của hình lập phương. Do đó bán kính của đáy hình nón bằng một nửa cạnh hình lập phương và bằng \(r=0,5\).

b) Đỉnh của hình nón tiếp xúc với một mặt của hình lập phương nên đường cao của hình nón bằng với cạnh của hình lập phương hay chiều cao \(h=1.\)

Với \(l\) là độ dài đường sinh của hình nón. Theo định lí Pytago, ta có :

 \(l^2=r^2+h^2 \Rightarrow l= \sqrt{1^2+ 0,5^2}=\dfrac{\sqrt{5}}{2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved