Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Đề bài
Một xe máy khởi hành từ Hà Nội đi Hải Phòng với vận tốc trung bình \(32\) km/h. Sau đó \(1\) giờ, một ô tô cũng khởi hành từ Hà Nội đi Hải Phòng, cùng đường với xe máy và với vận tốc trung bình \(48\) km/h. Hãy viết phương trình biểu thị việc ô tô gặp xe máy sau x giờ, kể từ khi ô tô khởi hành.
Phương pháp giải - Xem chi tiết
Áp dụng công thức: \(S=vt\)
Trong đó: \(S\) là quãng đường đi được trong thời gian \(t\),
\(v\) là vận tốc,
\(t\) là thời gian.
Lời giải chi tiết
Gọi x là thời gian chuyển động của ô tô kể từ thời điểm xuất phát đến lúc hai xe gặp nhau. (\(x > 0\); giờ)
Quãng đường của ô tô đi trong \(x\) giờ là: \(48x\) (km)
Vì xe máy khởi hành trước ô tô là \(1\) giờ nên thời gian xe máy đi tính từ lúc khởi hành cho đến lúc hai xe gặp nhau là: \(x+1\) (giờ)
Quãng đường của xe máy đi được khi ô tô chuyển động được \(x\) giờ là: \(32(x+1)\) (km)
Vì hai xe đi cùng một quãng đường nên ta có phương trình: \(48x = 32(x+1)\)
Vậy phương trình biểu thị việc ô tô gặp xe máy sau \(x\) giờ, kể từ khi ô tô khởi hành là: \(48x = 32(x+1)\)
Kiến thức chung
Chủ đề 1. Em với nhà trường
Unit 8: Have You Ever Been to a Festival?
Chủ đề 3. An toàn điện
Bài 11
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8