Đề bài
Một gương lõm có mặt cắt hình parabol như hình 1, có tiêu điểm cách đỉnh 5 cm. Cho biết bề sâu của gương là 45 cm. Tính khoảng cách AB
Phương pháp giải - Xem chi tiết
Bước 1: Từ tiêu điểm \( F({p\over 2}; 0)\) viết phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Bước 2: Thay \(x = 45\) vào phương trình trên tìm \(y_A\)
Bước 3: Xác định khoảng cách \(AB = 2. y_A \)
Lời giải chi tiết
Từ giả thiết ta có tiêu điểm \(F(5;0)\), suy ra \(\frac{p}{2} = 5\) hay \(p=10\).
Vậy phương trình chính tắc của parabol là: \({y^2} = 20x\)
Chiều sâu của gương là 45 cm tương ứng với \({x_A} = 45\), thay \({x_A} = 45\) vào phương trình \({y^2} = 20x\) ta có: \({y^2} = 20.45 = 900 \Rightarrow {y_A} = 30 \Rightarrow AB = 2{y_A} = 60 \)
Vậy khoảng cách AB là \(60 cm\)
Phần 2. Địa lí tự nhiên
Chương 2. Mô tả chuyển động
Chủ đề 2. Lực và chuyển động
Chương III. Động lực học
Chủ đề 8: Pháp luật nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10