Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình vuông, \(SA\) vuông góc với đáy, \(SA = AC\). Mặt phẳng qua \(A\) vuông góc với \(SC\) cắt \(SB,SC,SD\) lần lượt tại \(B',C',D'\). Tỉ số giữa thể tích hình chóp \(S.AB'C'D'\) và thể tích hình chóp \(S.ABCD\) là:
A. \(\dfrac{1}{6}\) B. \(\dfrac{1}{4}\)
C. \(\dfrac{1}{3}\) D. \(\dfrac{1}{2}\)
Phương pháp giải - Xem chi tiết
- Dựng mặt phẳng \(\left( {AB'C'D'} \right)\) và tính tỉ số các đoạn thẳng \(\dfrac{{SB'}}{{SB}},\dfrac{{SC'}}{{SC}},\dfrac{{SD'}}{{SD}}\).
- Tính tỉ số thể tích hai hình chóp bằng cách chia thành các hình chóp tam giác.
Lời giải chi tiết
Ta có: \(\Delta SAC\) vuông cân và \(SC \bot AC'\) nên \(C'\) là trung điểm của \(SC\).
Gọi \(I = AC \cap BD\) và \(J = SI \cap AC'\).
Khi đó \(J\) là trọng tâm của \(\Delta SAC\).
Dễ thấy \(BD \bot \left( {SAC} \right) \Rightarrow BD \bot SC\).
Mà \(SC \bot \left( {AB'C'D'} \right)\) \( \Rightarrow BD// (AB'C'D')\).
Do đó \(BD//B'D'\) \( \Rightarrow \dfrac{{SB'}}{{SB}} = \dfrac{{SD'}}{{SD}} = \dfrac{{SJ}}{{SI}} = \dfrac{2}{3}\).
\( \Rightarrow \dfrac{{{V_{S.AB'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\) \( = 1.\dfrac{2}{3}.\dfrac{1}{2} = \dfrac{1}{3}\)
\(\dfrac{{{V_{S.AD'C'}}}}{{{V_{S.ADC}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SD'}}{{SD}}.\dfrac{{SC'}}{{SC}}\)\( = 1.\dfrac{2}{3}.\dfrac{1}{2} = \dfrac{1}{3}\)
\( \Rightarrow \dfrac{1}{3} = \dfrac{{{V_{S.AB'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{{V_{S.AD'C'}}}}{{{V_{S.ADC}}}}\) \( = \dfrac{{{V_{S.AB'C'}} + {V_{S.AD'C'}}}}{{{V_{S.ABC}} + {V_{S.ADC}}}} = \dfrac{{{V_{S.AB'C'D'}}}}{{{V_{S.ABCD}}}}\)
Vậy \(\dfrac{{{V_{S.AB'C'D'}}}}{{{V_{S.ABCD}}}} = \dfrac{1}{3}\).
Chọn C.
Chương 1. Este - Lipid
Bài 27. Vấn đề phát triển một số ngành công nghiệp trọng điểm
Bài 9. Thiên nhiên nhiệt đới ẩm gió mùa
ĐỊA LÍ KINH TẾ
Đề kiểm tra 45 phút (1 tiết ) – Chương 8 – Hóa học 12