Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải các hệ phương trình sau bằng phương pháp thế.
LG a
LG a
\(\left\{\begin{matrix} 3x - y = 5 & & \\ 5x + 2y = 23 & & \end{matrix}\right.\)
Phương pháp giải:
Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\)
+) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).
+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).
+) Thế \(y\) vào phương trình (1) tìm được \(x\).
Lời giải chi tiết:
Ta có:
\(\left\{ \matrix{
3x - y = 5 \hfill \cr
5x + 2y = 23 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
5x + 2\left( {3x - 5} \right) = 23 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
5x + 6x - 10 = 23 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
11x = 23 + 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
11x = 33 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
x = 3 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = 3.3 - 5 \hfill \cr
x = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 4 \hfill \cr
x = 3 \hfill \cr} \right.\)
Vậy hệ có nghiệm duy nhất là \((x; y) = (3; 4)\).
LG b
LG b
\(\left\{\begin{matrix} 3x +5y = 1 & & \\ 2x -y =-8 & & \end{matrix}\right.\)
Phương pháp giải:
Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\)
+) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).
+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).
+) Thế \(y\) vào phương trình (1) tìm được \(x\).
Lời giải chi tiết:
Ta có:
\(\left\{ \matrix{
3x + 5y = 1 \hfill \cr
2x - y = - 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
3x + 5y = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
3x + 5\left( {2x + 8} \right) = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
3x + 10x + 40 = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
13x = 1 - 40 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
13x = - 39 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2.\left( { - 3} \right) + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2 \hfill \cr} \right.\)
Vậy hệ có nghiệm \((x; y) = (-3; 2)\).
LG c
LG c
\(\left\{\begin{matrix} \dfrac{x}{y} = \dfrac{2}{3}& & \\ x + y - 10 = 0 & & \end{matrix}\right.\)
Phương pháp giải:
Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\)
+) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).
+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).
+) Thế \(y\) vào phương trình (1) tìm được \(x\).
Lời giải chi tiết:
Ta có:
\(\left\{ \matrix{
\dfrac{x}{y} = \dfrac{2}{3} \hfill \cr
x + y - 10 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
\dfrac{2y}{3} + y = 10 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
{\left( \dfrac{2}{3} + 1 \right)}y = 10 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
\dfrac{5}{ 3}y = 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
y = 6 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x = \dfrac{2.6}{3} \hfill \cr
y = 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 4 \hfill \cr
y = 6 \hfill \cr} \right.\)
Vậy nghiệm của hệ là \((x; y) = (4; 6)\).
Đề thi vào 10 môn Toán Quảng Ninh
Bài 18: Sống có đạo đức và tuân theo pháp luật
Đề thi vào 10 môn Văn Thừa Thiên - Huế
Đề thi vào 10 môn Văn Nghệ An
Bài 12. Sự phát triển và phân bố công nghiệp