PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 17 trang 133 SGK Toán 9 tập 2

Đề bài

Một lớp học có \(40\) học sinh được xếp ngồi đều nhau trên các ghế băng. Nếu ta bớt đi \(2\) ghế băng thì mỗi ghế còn lại phải xếp thêm \(1\) học sinh. Tính số ghế băng lúc đầu.

Phương pháp giải - Xem chi tiết

+) Gọi ẩn và đặt điều kiện cho ẩn.

+) Biểu diễn các đại lượng đã biết và các đại lượng chưa biết theo ẩn.

+) Dựa vào các dữ liệu của bài toán để lập phương trình hoặc hệ phương trình.

+) Giải phương trình hoặc hệ phương trình vừa lập tìm ẩn.

+) Đối chiếu với điều kiện của ẩn và kết luận theo yêu cầu của đề bài.

Lời giải chi tiết

Gọi \(x\) (chiếc) là số ghế băng lúc đầu. \((x \in N^*).\) 

Khi đó số học sinh chia đều trên mỗi ghế băng là \(\displaystyle {{40} \over x}\) (học sinh)

Nếu bớt đi \(2\) ghế băng thì số ghế băng còn lại là \((x – 2)\) chiếc (x > 2). Khi đó mỗi ghế có \(\displaystyle \left( {{{40} \over x} + 1} \right)\) học sinh ngồi.

Vì tổng số học sinh vẫn là 40 em nên ta có phương trình:

\(\displaystyle \left( {x - 2} \right)\left( {{{40} \over x} + 1} \right) = 40\)

\(\Leftrightarrow 40 + x-\dfrac{80}{x}-2=40\)

\( \Leftrightarrow x-\dfrac {80}{x}-2=0\)\(\Rightarrow {x^2} - 2{\rm{x}} -80=0.\)

Có: \(\Delta' =1+80=81 >0 \Rightarrow \) Phương trình có hai nghiệm phân biệt: \(x_1=10 \, \, (tm)\) và \(x_2=-8 \, (loại).\) 

Vậy số ghế băng lúc đầu là \(10\) chiếc.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved