Bài 1.8 trang 15 Chuyên đề học tập Toán 11 Kết nối tri thức

1. Nội dung câu hỏi

Cho đường thẳng d và hai điểm phân biệt A, B sao cho đường thẳng AB không vuông góc với d. Gọi M, N tương ứng là các điểm đối xứng với A, B qua d. Hỏi A, B, M, N có là 4 đỉnh của một hình thang cân hay không?

 

2. Phương pháp giải 

Đọc kĩ yêu cầu, vẽ hình và thực hiện câu hỏi.

 

3. Lời giải chi tiết

Bài 1.8 trang 15 Chuyên đề học tập Toán 11 Kết nối tri thức

Vì M, N tương ứng là các điểm đối xứng với A, B qua d nên phép đối xứng trục d biến điểm A thành điểm M và biến điểm B thành điểm N. Do đó, d là đường trung trực của đoạn thẳng AM và đoạn thẳng BN. Suy ra AM // BN (vì cùng vuông góc với d).

Suy ra tứ giác AMNB là hình thang (1).

Gọi F là trung điểm của BN, khi đó F thuộc đường trung trực d của đoạn thẳng BN nên phép đối xứng trục d biến điểm F thành chính nó.

Từ đó suy ra phép đối xứng trục d biến góc ABF thành góc MNF nên ABF^=MNF^ hay ABN^=MNB^ (2).

Từ (1) và (2) suy ra tứ giác AMNB là hình thang cân.

Vậy A, B, M, N là 4 đỉnh của một hình thang cân.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved