Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đưa các phương trình sau về dạng \(ax^2 + 2b’x + c = 0\) và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai):
LG a
LG a
\(3{x^2} - 2x = {x^2} + 3\)
Phương pháp giải:
1) Triển khai đưa hết các số hạng sang vế trái và thu gọn, vế phải bằng \(0\).
2) Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
+) Nếu \(\Delta' =0\) thì phương trình có nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).
Lời giải chi tiết:
\(3{x^2} - 2x = {x^2} + 3\)
\( \Leftrightarrow 3{x^2} - 2x - {x^2} - 3=0\)
\(\Leftrightarrow 2{x^2} - 2x - 3 = 0\)
Suy ra \(a = 2,\ b' = - 1,\ c = - 3\)
\(\Rightarrow \Delta ' = {( - 1)^2} - 2.( - 3) = 7 > 0\).
Do đó phương trình có hai nghiệm phân biệt:
\({x_1} = \dfrac{1 + \sqrt 7 }{2} \approx 1,82\)
\({x_2} = \dfrac{1 - \sqrt 7 }{2} \approx - 0,82\)
LG b
LG b
\({(2x - \sqrt 2 )^2} - 1 = (x + 1)(x - 1)\)
Phương pháp giải:
1) Triển khai đưa hết các số hạng sang vế trái và thu gọn, vế phải bằng \(0\).
2) Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
+) Nếu \(\Delta' =0\) thì phương trình có nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).
Lời giải chi tiết:
\({(2x - \sqrt 2 )^2} - 1 = (x + 1)(x - 1)\)
\(\Leftrightarrow 4x^2-4\sqrt 2 x + 2- 1 = x^2 -1\)
\(\Leftrightarrow 4x^2-4\sqrt 2 x + 2 - 1 - x^2 +1=0\)
\(\Leftrightarrow 3{x^2} - 4\sqrt 2 x + 2 = 0\)
Suy ra \(a = 3,\ b' = - 2\sqrt 2 ,\ c = 2\)
\(\Rightarrow \Delta ' = {( - 2\sqrt 2 )^2} - 3.2 = 2 > 0\)
Do đó phương trình có hai nghiệm phân biệt:
\({x_1} = \dfrac{2\sqrt 2 + \sqrt 2 }{3} = \sqrt 2 \approx 1,41\)
\({x_2} = \dfrac{2\sqrt 2 - \sqrt 2 }{3} = \dfrac{\sqrt 2 }{3} \approx 0,47\)
LG c
LG c
\(3{x^2} + 3 = 2(x + 1)\)
Phương pháp giải:
1) Triển khai đưa hết các số hạng sang vế trái và thu gọn, vế phải bằng \(0\).
2) Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
+) Nếu \(\Delta' =0\) thì phương trình có nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).
Lời giải chi tiết:
\(3{x^2} + 3 = 2(x + 1) \)
\(\Leftrightarrow 3{x^2} +3- 2x -2 = 0\)
\(\Leftrightarrow 3{x^2} - 2x +1 = 0\)
Suy ra \(a = 3,\ b' = - 1,\ c = 1\)
\(\Rightarrow \Delta ' = {( - 1)^2} - 3.1 = - 2 < 0\)
Do đó phương trình vô nghiệm.
LG d
LG d
\(0,5x(x + 1) = {(x - 1)^2}\)
Phương pháp giải:
1) Triển khai đưa hết các số hạng sang vế trái và thu gọn, vế phải bằng \(0\).
2) Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
+) Nếu \(\Delta' =0\) thì phương trình có nghiệm kép: \(x_1=x_2=\dfrac{-b'}{a}\).
Lời giải chi tiết:
\(0,5x(x + 1) = {(x - 1)^2} \)
\(\Leftrightarrow 0,5x^2 + 0,5x = x^2-2x+1 \)
\(\Leftrightarrow 0,5x^2 + 0,5x -x^2+2x-1=0 \)
\(\Leftrightarrow -0,5 x^2 +2,5 x -1 = 0\)
\(\Leftrightarrow x^2 -5 x +2 = 0\)
Suy ra \(a = 1;\ b' = - 2,5;\ c = 2\)
\(\Rightarrow \Delta ' = {( - 2,5)^2} - 1.2 = 4,25 > 0\)
Do đó phương trình có hai nghiệm phân biệt:
\({x_1} = 2,5 + \sqrt {4,25} \approx 4,56\)
\({x_2} = 2,5 - \sqrt {4,25} \approx 0,44\)
Bài 8:Năng động, sáng tạo
Đề ôn tập học kì 1 – Có đáp án và lời giải
CHƯƠNG II. ĐIỆN TỪ HỌC
Tải 10 đề thi giữa kì 2 Văn 9
Các thể loại văn tham khảo lớp 9