PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Bài 19 trang 12 sgk toán 8 tập 1

Đề bài

Đố: Tính diện tích phần hình còn lại mà không cần đo.

Từ một miếng tôn hình vuông có cạnh bằng \(a + b\), bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng \(a - b\) (cho \(a > b\)). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?

Phương pháp giải - Xem chi tiết

- Biểu diễn phần diện tích còn lại của miếng tôn theo \(a,b.\)

- Áp dụng:

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết

Diện tích của miếng tôn hình vuông ban đầu là \({\left( {a + b} \right)^2}\) 

Diện tích của miếng tôn hình vuông phải cắt là \({\left( {a - b} \right)^2}\).

Phần diện tích miếng tôn còn lại là \({\left( {a + b} \right)^2} - {\left( {a - b} \right)^2}\).

Ta có:

\(\eqalign{
& {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} \cr
& = {a^2} + 2ab + {b^2} - \left( {{a^2} - 2ab + {b^2}} \right) \cr
& = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} \cr
& = \left( {{a^2} - {a^2}} \right) + \left( {{b^2} - {b^2}} \right) + \left( {2ab + 2ab} \right) \cr
& = 4ab \cr} \)

Vậy phần diện tích hình còn lại là \(4ab\) và không phụ thuộc vào vị trí cắt.

Hoặc ta có thể áp dụng hằng đẳng thức thứ 3 để tính như sau:

\(\begin{array}{l}
{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2}\\
= \left( {a + b + a - b} \right)\left[ {a + b - \left( {a - b} \right)} \right]\\
= 2a.\left( {a + b - a + b} \right)\\
= 2a.2b\\
= 4ab
\end{array}\)


Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved