Bài 1. Định lí Ta - let trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta - let
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất
Bài 6. Trường hợp đồng dạng thứ hai
Bài 7. Trường hợp đồng dạng thứ ba
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Bài 9. Ứng dụng thực tế của tam giác đồng dạng
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Cho hình thang \(ABCD\) (\(AB // CD\)).
Đường thẳng \(a\) song song với \(DC\), cắt các cạnh \(AD\) và \(BC\) theo thứ tự là \(E\) và \(F.\)
Chứng minh rằng:
a) \(\dfrac{AE}{ED} = \dfrac{BF}{FC}\);
b) \(\dfrac{AE}{AD} = \dfrac{BF}{BC}\)
c) \(\dfrac{DE}{DA} = \dfrac{CF}{CB}\).
Phương pháp giải - Xem chi tiết
- Áp dụng định lí Talet.
Lời giải chi tiết
a) Nối \(AC\) cắt \(EF\) tại \(O\)
\(∆ADC\) có \(EO // DC\) (giả thiết) \( \Rightarrow \dfrac{AE}{ED} = \dfrac{AO}{OC}\) (1) (theo định lí Talet)
\(∆ABC\) có \(OF // AB\) (giả thiết) \( \Rightarrow \dfrac{AO}{OC} = \dfrac{BF}{FC}\) (2) (theo định lí Talet)
Từ (1) và (2) \(\Rightarrow \dfrac{AE}{ED} = \dfrac{BF}{FC}\)
b) Theo câu a) ta có:
\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \Rightarrow {{FC} \over {BF}} = {{ED} \over {AE}} \cr
& \Rightarrow {{FC} \over {BF}} + 1 = {{ED} \over {AE}} + 1 \cr
& \Rightarrow {{FC + BF} \over {BF}} = {{ED + AE} \over {AE}} \cr
& \Rightarrow {{BC} \over {BF}} = {{AD} \over {AE}} \cr
& \Rightarrow {{AE} \over {AD}} = {{BF} \over {BC}} \cr} \)
c) Theo câu a) ta có:
\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \cr
& \Rightarrow {{AE} \over {ED}} + 1 = {{BF} \over {FC}} + 1 \cr
& \Rightarrow {{AE + ED} \over {ED}} = {{BF + FC} \over {FC}} \cr
& \Rightarrow {{AD} \over {ED}} = {{BC} \over {FC}} \cr
& \Rightarrow {{FC} \over {BC}} = {{ED} \over {AD}}\,\,\,hay\,\,{{DE} \over {DA}} = {{CF} \over {CB}} \cr} \)
Unit 4: Ethnic groups of Viet Nam
CHƯƠNG II. NHIỆT HỌC - VẬT LÍ 8
Unit 7: When Did It Happen?
Chủ đề 3. Trách nhiệm với bản thân
Chủ đề 5. Nhiệt
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8