PHẦN GIẢI TÍCH - TOÁN 12

Bài 2 trang 10 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Tìm các khoảng đơn điệu của các hàm số:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

a) \(y=\dfrac{3x+1}{1-x}\) ;

Phương pháp giải:

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

+) Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Ở bài toán này cần chú ý các tập xác định của hàm số.

Lời giải chi tiết:

\(y=\dfrac{3x+1}{1-x}=\dfrac{3x+1}{-x+1}\)        

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{3.1-(-1).1}{{{\left( -x+1 \right)}^{2}}}\)\(=\dfrac{4}{{{\left( -x+1 \right)}^{2}}}>0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT: \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{3x + 1}}{{1 - x}} =  - 3,\) \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{3x + 1}}{{1 - x}} =  - \infty ,\) \(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{3x + 1}}{{1 - x}} =  + \infty \)            

LG b

b) \(y=\dfrac{x^{2}-2x}{1-x}\) ;

Lời giải chi tiết:

\(y=\dfrac{{{x}^{2}}-2x}{1-x}.\)

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{\left( 2x-2 \right)\left( 1-x \right)+{{x}^{2}}-2x}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{x}^{2}}+2x-2}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+2 \right)}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+1 \right)-1}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{\left( x-1 \right)}^{2}}-1}{{{\left( 1-x \right)}^{2}}}\) \(=-1-\dfrac{1}{{{\left( 1-x \right)}^{2}}}<0\ \forall x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào bảng biến thiên:

\(\begin{align}& \underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=-\infty \cr& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=+\infty \  \\ & \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=+\infty \cr&\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=-\infty  \\ \end{align}\)

LG c

c) \(y=\sqrt{x^{2}-x-20}\) ;   

Lời giải chi tiết:

\(y=\sqrt{{{x}^{2}}-x-20}\)                     

Có \({{x}^{2}}-x-20\ge 0\) \(\Leftrightarrow \left( x+4 \right)\left( x-5 \right)\ge 0\) 

x-4x5

Tập xác định: \(D=\left( -\infty ;-4 \right]\cup \left[ 5;+\infty  \right).\)

Có \(y'=\dfrac{2x-1}{2\sqrt{{{x}^{2}}-x-20}}\) \(\Rightarrow y'=0\Leftrightarrow 2x-1=0\)\(\Leftrightarrow x=\dfrac{1}{2}\notin D\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(\left( -\infty ;-4 \right)\) và đồng biến trên khoảng \(\left( 5;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}  & \underset{x\to -\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty  \\  & \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0\cr& \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0.\  \\ \end{align}\)

LG d

d) \(y=\dfrac{2x}{x^{2}-9}\).

Lời giải chi tiết:

\(y=\dfrac{2x}{{{x}^{2}}-9}.\)

Có \({{x}^{2}}-9\ne 0\Leftrightarrow x\ne \pm 3.\)

Tập xác định:  \(D=R\backslash \left\{ \pm 3 \right\}.\)

Có: \(y'=\dfrac{2\left( {{x}^{2}}-9 \right)-2x.2x}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2{{x}^{2}}-18}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2\left( {{x}^{2}}+9 \right)}{{{\left( {{x}^{2}}-9 \right)}^{2}}}<0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ -3 \right);\ \left( -3;\ 3 \right)\) và \(\left( 3;\ +\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0 \\ & \underset{x\to -{{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr&\underset{x\to -{{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty  \\ & \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty . \\ \end{align}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved