Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hai mặt phẳng \((\alpha)\) và \((\beta)\) vuông góc với nhau. Người ta lấy trên giao tuyến \(\Delta\) của hai mặt phẳng đó hai điểm \(A\) và \(B\) sao cho \(AB=8cm\). Gọi \(C\) là một điểm trên \((\alpha)\) và \(D\) là một điểm trên \((\beta)\) sao cho \(AC\) và \(BD\) cùng vuông góc với giao tuyến \(\Delta\) và \(AC=6cm\), \(BD=24cm\). Tính độ dài đoạn \(CD\).
Phương pháp giải - Xem chi tiết
Chứng minh \(AC\bot AD\) và sử dụng định lý Pi-ta-go để tính toán.
Lời giải chi tiết
\(\left. \matrix{(\alpha ) \bot (\beta ) \hfill \cr AC \bot \Delta \hfill \cr AC \subset (\alpha ) \hfill \cr} \right\} \Rightarrow AC \bot (\beta )\)
Do đó \(AC\bot AD\) hay tam giác \(ACD\) vuông tại \(A\)
Áp dụng định lí Pytago vào tam giác \(ACD\) ta được: \(D{C^2} = A{C^2} + A{D^2}(1)\)
Vì \(BD\bot AB \Rightarrow \Delta ABD\) vuông tại \(B\).
Áp dụng định lí Pytago vào tam giác \(ABD\) ta được: \(A{D^2} = A{B^2} + B{D^2}(2)\)
Từ (1) và (2) suy ra: \(D{C^2} = A{C^2} + A{B^2} + B{D^2} = {6^2} + {8^2} + {24^2} = 676\)
\( \Rightarrow DC = \sqrt {676} = 26cm\)
Chủ đề 4. Trách nhiệm với gia đình
Unit 2: Get well
Chủ đề 6: Phối hợp kĩ thuật đập cầu thuận tay
Chuyên đề 3: Dầu mỏ và chế biến dầu mỏ
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11