Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tam giác \(ABC\) nội tiếp đường tròn tâm \(O\). Gọi \(G\) và \(H\) tương ứng là trọng tâm và trực tâm của tam giác, các điểm \(A',B',C'\) lần lượt là trung điểm của các cạnh \(BC, CA, AB\).
a) Tìm phép vị tự \(F\) biến \(A, B, C\) tương ứng thành \(A',B',C'\)
b) Chứng minh rằng \(O, G, H\) thẳng hàng.
c) Tìm ảnh của \(O\) qua phép vị tự \(F\)
d) Gọi \(A”, B”, C”\) lần lượt là trung điểm của các đoạn thẳng \(AH, BH, CH\); \(A_1, B_1, C_1\) theo thứ tự là giao điểm thứ hai của các tia \(AH, BH, CH\) với đường tròn \((O)\); \(A_1',B_1',C_1'\) tương ứng là chân các đường cao đi qua \(A, B, C\). Tìm ảnh của \(A, B, C\), \(A_1, B_1, C_1\) qua phép vị tự tâm \(H\) tỉ số \({1 \over 2}\)
e) Chứng minh chín điểm \(A',B',C'\),\(A”, B”, C”\),\(A_1',B_1',C_1'\)cùng thuộc một đường tròn (đường tròn này gọi là đường tròn Ơ-le của tam giác \(ABC\))
Phương pháp giải - Xem chi tiết
a) Dựa vào định nghĩa phép vị tự và tính chất trọng tâm của tam giác.
b) Chứng minh hai vectơ \(\overrightarrow {GO} ;\,\,\overrightarrow {GH} \) cùng phương.
c) Dựa vào định nghĩa phép vị tự.
d) Sử dụng tính chất của phép vị tự: Ảnh của đường tròn qua phép vị tự là 1 đường tròn.
Lời giải chi tiết
a) Ta có
\(\eqalign{
& \overrightarrow {GA'} = - {1 \over 2}\overrightarrow {GA} ; \cr
& \overrightarrow {GB'} = - {1 \over 2}\overrightarrow {GB} ; \cr
& \overrightarrow {GC'} = - {1 \over 2}\overrightarrow {GC} \cr}\).
Vậy phép vị tự tâm \(G\) tỉ số \(k = - {1 \over 2}\) biến \(A, B, C\) thành \(A’, B’, C’\).
b) \(A’\) là trung điểm của dây \(BC\) nên \(OA’ ⊥ BC\)
Ta lại có \(BC // C’B’ \Rightarrow OA’ ⊥ B’C’ \). Tương tự \(B'O \bot A'C'\)
\(⇒\) Trong tam giác \(A’B’C’\), \(A'O \bot B'C',B'O \bot A'C'\) nên \(O\) là trực tâm của \(∆A’B’C’\).
\(H\) là trực tâm của \(∆ABC\) và \(O\) là trực tâm của \(∆A’B’C’\) nên \(O\) là ảnh của \(H\) trong phép vị tự tâm \(G\), tỉ số \(k = - {1 \over 2} \Rightarrow \overrightarrow {GO} = - {1 \over 2}\overrightarrow {GH} \)
\(⇒\) Ba điểm \(O, G, H\) thẳng hàng.
c) Gọi \({V_{\left( {G; - {1 \over 2}} \right)}(O)=O'}\) ta có:
\(\eqalign{
& \overrightarrow {GO'} = - {1 \over 2}\overrightarrow {GO} \cr
& \overrightarrow {GO} = - {1 \over 2}\overrightarrow {GH} \Rightarrow \overrightarrow {OG} = {1 \over 2}\overrightarrow {GH} \cr
& \overrightarrow {OG} + \overrightarrow {GO'} = {1 \over 2}\overrightarrow {GH} - {1 \over 2}\overrightarrow {GO} \cr
& \Rightarrow \overrightarrow {OO'} = {1 \over 2}\left( {\overrightarrow {GH} - \overrightarrow {GO} } \right) \cr
& \Rightarrow \overrightarrow {OO'} = {1 \over 2}\overrightarrow {OH} \cr} \)
Suy ra \(O’\) là trung điểm của đoạn thẳng \(OH\).
d) Gọi A'', B'', C'' lần lượt là trung điểm của AH, BH, CH ta có:
\(\eqalign{
& \overrightarrow {HA''} = {1 \over 2}\overrightarrow {HA} \cr
& \overrightarrow {HB''} = {1 \over 2}\overrightarrow {HB} \cr
& \overrightarrow {HC''} = {1 \over 2}\overrightarrow {HC} \cr} \)
Vậy \(A”, B”, C”\) là ảnh của các điểm \(A, B, C\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\).
Ta dễ dàng chứng minh được \(A_1',B_1',C_1'\) theo thứ tự là trung điểm của các đoạn thẳng \(H{A_1},H{B_1},H{C_1}\) nên:
\(\eqalign{
& \overrightarrow {H{A_1}'} = {1 \over 2}\overrightarrow {H{A_1}} \cr
& \overrightarrow {H{B_1}'} = {1 \over 2}\overrightarrow {H{B_1}} \cr
& \overrightarrow {H{C_1}'} = {1 \over 2}\overrightarrow {H{C_1}} \cr} \)
Như vậy \(A_1',B_1',C_1'\) theo thứ tự là ảnh của các điểm \(A_1, B_1, C_1\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\)
e) Gọi \(A_2, B_2, C_2\) theo thứ tự là các điểm xuyên tâm đối của các điểm \(A, B, C\) qua tâm \(O\) của đường tròn. Ta dễ dàng chứng minh được tứ giác \(BHCA_2\) là hình bình hành, do đó \(H\) và \(A_2\) đối xứng qua \(A’\), ta có:
\(\eqalign{
& \overrightarrow {HA'} = {1 \over 2}\overrightarrow {H{A_2}} \cr
& \overrightarrow {HB'} = {1 \over 2}\overrightarrow {H{B_2}} \cr
& \overrightarrow {HC'} = {1 \over 2}\overrightarrow {H{C_2}} \cr} \)
Như vậy, các điểm \(A’, B’, C’\) theo thứ tự là ảnh của các điểm \(A_2, B_2, C_2\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\).
Từ đó ta có:
Chín điểm \(A’, B’,C’,A”, B”,C”\), \(A_1',B_1',C_1'\) theo thứ tự là ảnh của các điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) trong phép tự vị \({V_{\left( {H;{1 \over 2}} \right)}}\) mà chín điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) nằm trên đường tròn \((O)\) nên chín điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) nằm trên đường tròn ảnh của đường tròn \((O)\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\)
Grammar Banksection
Chủ đề 5: Phối hợp kĩ thuật đánh cầu cao thuận tay
Unit 7: World Population - Dân số thế giới
Chương 6. Hidrocacbon không no
Chủ đề 6: Văn hóa tiêu dùng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11