Tìm các số thực \(x\) và \(y\), biết:
LG a
a) \((3x - 2) + (2y + 1)i = (x + 1) - (y - 5)i\)
Phương pháp giải:
Cho hai số phức: \(z_1=a_1+b_1i\) và \(z_2=a_2+b_2i.\)
Khi đó: \({z_1} = {z_2} \Leftrightarrow \left\{ \begin{array}{l}
{a_1} = {a_2}\\
{b_1} = {b_2}
\end{array} \right..\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((3x - 2) + (2y + 1)i = (x + 1) - (y - 5)i\) \(⇔\left\{\begin{matrix} 3x-2=x+1\\ 2y+1=-(y-5) \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x = 3\\
3y = 4
\end{array} \right.\)
\(⇔ \left\{\begin{matrix} x=\dfrac{3}{2}\\ y=\dfrac{4}{3} \end{matrix}\right..\)
Vậy \( \left( {x;\;y} \right) = \left( {\dfrac{3}{2};\;\dfrac{4}{3}} \right).\)
LG b
b) \((1 - 2x) - i\sqrt 3 = \sqrt 5 + (1 - 3y)i\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((1 - 2x) - i\sqrt 3 = \sqrt 5 + (1 - 3y)i\)
\( ⇔ \left\{\begin{matrix} 1-2x=\sqrt{5}\\ 1-3y=-\sqrt{3} \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x = 1 - \sqrt 5 \\
3y = 1 + \sqrt 3
\end{array} \right.\)
\(⇔ \left\{\begin{matrix} x=\dfrac{1-\sqrt{5}}{2}\\ y=\dfrac{1+\sqrt{3}}{3} \end{matrix}\right..\)
Vậy \( \left( {x;\;y} \right) = \left( \dfrac{1-\sqrt{5}}{2};\;\dfrac{1+\sqrt{3}}{3} \right).\)
LG c
c) \((2x + y) + (2y - x)i \) \(= (x - 2y + 3) + (y + 2x + 1)i\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((2x + y) + (2y - x)i = (x - 2y + 3) + (y + 2x + 1)i\)
\( ⇔ \left\{\begin{matrix} 2x+y=x-2y+3\\ 2y-x=y+2x+1 \end{matrix}\right. ⇔ \left\{\begin{matrix} x+3y =3\\ -3x+y=1 \end{matrix}\right.\)
\(⇔ \left\{\begin{matrix} x=0\\ y=1 \end{matrix}\right.\).
Vậy \( \left( {x;\;y} \right)= \left( {0;\;1} \right).\)
CHƯƠNG 7. SẮT VÀ MỘT SỐ KIM LOẠI QUAN TRỌNG
Chương 4. POLIME VÀ VẬT LIỆU POLIME
Địa lí các ngành kinh tế. Một số vấn đề phát triển và phân bố nông nghiệp
Tải 10 đề kiểm tra 15 phút - Chương 2 - Hoá học 12
Tác giả - Tác phẩm tập 1