Bài 2 trang 18 SGK Hình học 12

Đề bài

Cho hình lập phương \((H)\). Gọi \((H’)\) là hình bát diện đều có các đỉnh là tâm các mặt của \((H)\). Tính tỉ số diện tích toàn phần của \((H)\) và \((H’)\).

Phương pháp giải - Xem chi tiết

+) Bát diện đều là khối đa diện gồm 8 mặt là 8 tam giác đều.

+) Diện tích toàn phần của hình bát diện đều = 8. diện tích 1 mặt.

Lời giải chi tiết

 

Giả sử khối lập phương có cạnh bằng \(a\). Khi đó diện tích toàn phần của nó là: \(S_1 = 6a^2\)

Gọi \(M\) là tâm của hình vuông \(ABCD\); \(Q\) là tâm hình vuông \(ADD'A'\); \(P\) là tâm hình vuông \(ABB'A'\); \(N\) là tâm hình vuông \(BCC'B'\); \(E\) là tâm hình vuông \(DCC'D'\) và \(F\) là tâm hình vuông \(A'B'C'D'\).

Xét bát diện đều thu được, khi đó diện tích toàn phần của nó là \(8\) lần diện tích tam giác đều \(MQE\) (hình vẽ)

Xét tam giác \(ACD’\), ta có \(M, Q\) lần lượt là trung điểm của \(AC\) và \(AD’\) nên \(MQ\) là đường trung bình của tam giác \(ACD’\), do đó \(MQ = \displaystyle{1 \over 2}C{\rm{D}}' = \displaystyle{{a\sqrt 2} \over 2} \) 

Ta có \({S_{MQE}} = \displaystyle{1 \over 2}{\left( {\displaystyle{{a\sqrt 2} \over 2} } \right)^2}.{{\sqrt 3 } \over 2} = {{\sqrt 3 {a^2}} \over 8} \) 

Diện tích xung quanh của bát diện đều là: \({S_2} = 8.\displaystyle{{\sqrt 3 {a^2}} \over 8}  = {a^2}\sqrt 3 \)

Do đó: \(\displaystyle{{{S_1}} \over {{S_2}}} = {{6{{\rm{a}}^2}} \over {a^2\sqrt 3 }} = 2\sqrt 3 \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved