Bài 2 trang 24 SGK Hình học 11

Đề bài

Cho hình chữ nhật \(ABCD\). Gọi \(E, F, H, K, O, I, J\) lần lượt là trung điểm của các cạnh \(AB, BC, CD, DA, KF, HC, KO\). Chứng minh hai hình thang\(AEJK\) và \(FOIC\) bằng nhau.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi L là trung điểm của OF, thực hiện liên tiếp hai phép biến hình sau:

- Phép đối xứng trục EO.

- Phép tịnh tiến theo \(\overrightarrow {EO}\).

Các phép tịnh tiến và phép đối xứng trục hình không làm thay đổi khoảng cách giữa hai điểm bất kì.

Lời giải chi tiết

 

Gọi L là trung điểm của OF.

+ Vì EO là đường trung trực của các đoạn thẳng AB; KF; JL

⇒ B = ĐEO (A); F = ĐEO (K) ; L = ĐEO (J); E = ĐEO (E)

⇒ Hình thang BFLE là ảnh của hình thang AKJE qua phép đối xứng trục EO.

⇒ Hai hình thang BFLE và AKJE bằng nhau (1).

⇒ Hình thang FCIO là ảnh của hình thang BFLE qua phép tịnh tiến theo \(\overrightarrow {EO}\)

⇒ Hai hình thang FCIO và BFLE bằng nhau (2)

Từ (1) và (2) ⇒ hai hình thang FCIO và AKJE bằng nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved