Toán 10 tập 1 - Chân trời sáng tạo

Bài 2 trang 25

Đề bài

Xác định các tập hợp \(A \cap B\) trong mỗi trường hợp sau:

a) \(A = \{ x \in \mathbb{R}|{x^2} - 2 = 0\} ,\)\(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \)

b) \(A = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1\} ,\)\(B = \{ (x;y)|\;x,y \in \mathbb{R},y =  - x + 5\} \)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

Phương pháp giải - Xem chi tiết

a) \(A \cap B = \{ x|x \in A\) và \(x \in B\} \)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Lời giải chi tiết

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{  - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y =  - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 =  - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved