Bài 2 trang 29 SGK Hình học 11

Đề bài

Tìm tâm vị tự của hai đường tròn trong các trường hợp sau

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào tính chất phép vị tự biến đường tròn thành đường tròn.

Lời giải chi tiết

 

Cách xác định tâm vị tự:

- Lấy điểm \(M\) thuộc đường tròn \((I)\).

- Qua \(I'\) kẻ đường thẳng song song với \(IM\), đường thẳng này cắt đường tròn \((I')\) tại \(M'\) và \(M''\).

- Hai đường thẳng \(MM'\) và \(MM''\) cắt đường thẳng \(II'\) theo thứ tự \(O\) và \(O'\).

Khi đó, \(O\) và \(O'\) là các tâm vị tự cần tìm.

Vì hai đường tròn đã cho có bán kính khác nhau nên chúng có hai tâm vị tự là \(O\) và \(O'\), xác định trong từng trường hợp như sau (xem hình vẽ):

a) Trường hợp 1: Hai đường tròn không cắt nhau

b) Trường hợp 2: Hai đường tròn tiếp xúc nhau.

c) Trường hợp 3: Hai đường tròn chứa nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved