LG a
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:
\(y=- {x^4} + 8{x^{2}}-1\);
Phương pháp giải:
Các bước khảo sát sự biến thiên và vẽ đồ thị hàm số:
Bước 1: Tìm TXĐ của hàm số.
Bước 2: Khảo sát sự biến thiên:
*) Xét chiều biến thiên của hàm số:
+) Tính đạo hàm.
+) Tìm các điểm \({{x}_{i}}\) mà tại đó đạo hàm có \(y'=0\) hoặc đạo hàm không xác định.
+) Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.
*) Tìm cực trị: \(y\left( {{x}_{i}} \right).\)
*) Tìm các giới hạn vô cực, các giới hạn có kết quả là vô cực và tiệm cận của đồ thị hàm số nếu có: \(\mathop {\lim }\limits_{x \to \pm \infty } y;\mathop {\lim }\limits_{x \to {x_0}} y...\)
*) Lập bảng biến thiên: Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.
Bước 3: Đồ thị:
+) Giao điểm của đồ thị với trục tung: \(x=0\Rightarrow y=....\Rightarrow A\left( 0;\ ..... \right).\)
+) Giao điểm của đồ thị với trục hoành: \(y=0\Rightarrow x=.....\Rightarrow B\left( ...;0 \right).\)
+) Các điểm cực đại, cực tiểu nếu có.
Lời giải chi tiết:
Tập xác định: \(D=\mathbb R\);
Sự biến thiên:
Ta có: \(y' =-4x^3+ 16x = -4x(x^2- 4)\)
\(\Rightarrow y' = 0 \Leftrightarrow - 4x\left( {{x^2} - 4} \right) = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 2\end{array} \right.\)
- Hàm số đồng biến trên khoảng \((-\infty;-2)\) và \((0;2)\); nghịch biến trên khoảng \((-2;0)\) và \(2;+\infty)\).
- Cực trị:
Hàm số đạt cực đạt tại hai điểm \(x=-2\) và \(x=2\); \(y_{CĐ}=y(\pm 2)=15\).
Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}=-1\)
- Giới hạn: \(\mathop {\lim y}\limits_{x \to \pm \infty } = - \infty \)
Bảng biến thiên:
Đồ thị giao \(Oy\) tại điểm \((0;-1)\)
Hàm số đã cho là hàm số chẵn nhận trục \(Oy\) làm trục đối xứng.
Đồ thị
LG b
\(y= {x^4} - 2{x^2} + 2\);
Lời giải chi tiết:
Tập xác định: \(D=\mathbb R\);
Sự biến thiên:
Ta có: \(y' =4x^3- 4x = 4x(x^2- 1)\);
\( \Rightarrow y' = 0 \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \) \(\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm 1
\end{array} \right..\)
- Hàm số đồng biến trên khoảng \((-1;0)\) và \((1;+\infty)\); nghịch biến trên khoảng \((-\infty;-1)\) và \((0;1)\).
- Cực trị:
Hàm số đạt cực đại tại \(x=0\); \(y_{CĐ}=2\).
Hàm số đạt cực tiểu tại hai điểm \(x=-1\) và \(x=1\); \(y_{CT}=y(\pm 1)=1\).
-Giới hạn:
\(\mathop {\lim y}\limits_{x \to \pm \infty } = + \infty \)
Bảng biến thiên:
Hàm số đã cho là hàm số chẵn nhận trục \(Oy\) làm trục đối xứng.
Đồ thị giao \(Oy\) tại điểm \((0;2)\)
Đồ thị
LG c
\(y = {1 \over 2}{x^4} + {x^2} - {3 \over 2}\);
Lời giải chi tiết:
Tập xác định: \(D=\mathbb R\);
Sự biến thiên:
Ta có: \(y' =2x^3+ 2x = 2x(x^2+1)\);
\( \Rightarrow y' = 0 \Leftrightarrow 2x\left( {{x^2} + 1} \right) = 0 \) \(\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} + 1 = 0
\end{array} \right. \Leftrightarrow x = 0.\)
- Hàm số nghịch biến trên khoảng \((-\infty;0)\); đồng biến trên khoảng \((0;+\infty)\).
-Cực trị:
Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}={-3\over 2}\)
-Giới hạn:
\(\mathop {\lim y}\limits_{x \to \pm \infty } = + \infty \)
Bảng biến thiên :
Hàm số đã cho là hàm số chẵn, nhận trục \(Oy\) làm trục đối xứng.
Đồ thị giao \(Ox\) tại hai điểm \((-1;0)\) và \((1;0)\); giao \(Oy\) tại \((0;{-3\over 2})\).
Đồ thị như hình bên.
LG d
\(y = - 2{x^2} - {x^4} + 3\).
Lời giải chi tiết:
Tập xác định: \(D=\mathbb R\);
Sự biến thiên:
Ta có: \(y' = -4x - 4x^3= -4x(1 + x^2)\);
\( \Rightarrow y' = 0 \Leftrightarrow - 4x\left( {1 + {x^2}} \right) = 0 \) \(\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} + 1 = 0
\end{array} \right. \Leftrightarrow x = 0.\)
- Hàm số đồng biến trên khoảng: \((-\infty;0)\); nghịch biến trên khoảng: \((0;+\infty)\).
- Cực trị: Hàm số đạt cực đạt tại \(x=0\); \(y_{CĐ}=3\).
- Giới hạn:
\(\mathop {\lim y}\limits_{x \to \pm \infty } = -\infty \)
Bảng biến thiên:
Hàm số đã cho là hàm chẵn, nhận trục \(Oy\) làm trục đối xứng.
Đồ thị giao \(Ox\) tại hai điểm \((1;0)\) và \((-1;0)\); giao \(Oy\) tại điểm \((0;3)\).
Đồ thị như hình bên.