Bài 2 trang 51 SGK Hình học 12

Đề bài

Gọi \(S\) là diện tích xung quanh của hình nón tròn xoay được sinh ra bởi đoạn thẳng \(AC'\) của hình lập phương \(ABCD.A'B'C'D'\) có cạnh \(b\) khi quay xung quanh trục \(AA'\). Diện tích \(S\) là:

(A) \(πb^2\);                           (B) \(πb^2\sqrt 2 \) ;

(C) \(πb^2\sqrt 3 \) ;                     (D) \(πb^2\sqrt 6 \).

Phương pháp giải - Xem chi tiết

Khi quay \(AC'\) xung quanh trục \(AA'\) ta được hình nón đỉnh A có chiều cao \(AA'\), đường sinh \(AC'\) và bán kính đáy \(A'C'\).

Công thức tính diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\), trong đó \(r;l\) lần lượt là bán kính đáy và độ dài đường sinh của hình nón.

Lời giải chi tiết

Hình nón tạo bởi khi quay \(AC'\) xung quanh \(AA'\) có đường sinh \(l=AC'\) và bán kính đáy \(r=C'A'\)

Xét tam giác vuông \(A'B'C'\) có: \(A'C' = \sqrt {A'B{'^2} + B'C{'^2}}  = \sqrt {{b^2} + {b^2}}  = b\sqrt 2=r \)

Xét tam giác vuông \(AA'C'\) có: \(AC' = \sqrt {AA{'^2} + A'C{'^2}}  = \sqrt {{b^2} + 2{b^2}}  = b\sqrt 3=l \)

Vậy \({S_{xq}} = \pi rl = \pi b\sqrt 2 .b\sqrt 3  = \pi {b^2}\sqrt 6 \)

Chọn (D).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved