Bài 12. Tổng các góc trong một tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài tập cuối chương IV
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Luyện tập chung trang 66, 67, 68
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 76
Luyện tập chung trang 60, 61, 62
Đề bài
Bài 2 (4.24). Cho tam giác ABC cân tại A và M là trung điểm của BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Phương pháp giải - Xem chi tiết
Chứng minh \(\widehat {AMB} = {90^o}\) và AM là tia phân giác của góc BAC .
Lời giải chi tiết
GT | \(\Delta ABC\)cân tại A, \(M \in BC,MB = MC.\) |
KL | \(AM \bot BC,\widehat {MAB} = \widehat {MAC}\) |
Xét tam giác ABM và ACM ta có:
AB = AC (do \(\Delta ABC\)cân tại A)
\(\widehat {ABM} = \widehat {ACM}\) (do \(\Delta ABC\)cân tại A)
MB = MC (theo giả thiết)
Vậy \(\Delta ABM = \Delta ACM\)(c – g – c). Do đó \(\widehat {MAB} = \widehat {MAC}\) hay AM là tia phân giác của góc BAC.
Đồng thời \(\widehat {AMB} = \widehat {AMC} = \frac{{\widehat {AMB} + \widehat {AMC}}}{2} = \frac{{{{180}^o}}}{2} = {90^o}\) hay \(AM \bot BC.\)
Mở đầu
Unit 6: Education
Chương 4: Tam giác bằng nhau
Bài 3. Những góc nhìn văn chương
Tổng hợp danh pháp các nguyên tố hóa học
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7