Bài 2 trang 77 sách giáo khoa hình học lớp 11

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M, N, P\) theo thứ tự là trung điểm của các đoạn thẳng \(SA, BC, CD\). Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNP)\).

Gọi \(O\) là giao điểm hai đường chéo của hình bình hành \(ABCD\), hãy tìm giao điểm của đường thẳng \(SO\) với \(mp (MNP)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Xác định giao tuyến của mặt phẳng \((MNP)\) với các mặt của hình chóp.

b) Tìm điểm chung của đường thẳng \(SO\) với \(mp (MNP)\).

Lời giải chi tiết

a) Trong mặt phẳng \((ABCD)\) kéo dài \(NP\) cắt đường thẳng \(AB, AD\) lần lượt tại \(E, F\).

Trong mặt phẳng \((SAD)\) gọi \(Q=SD\cap MF\)

Trong mặt phẳng \((SAB)\) gọi \(R=SB\cap ME\)

Do đó 

\( \Rightarrow \left\{ \begin{array}{l}
\left( {MNP} \right) \cap \left( {SAD} \right) = MQ\\
\left( {MNP} \right) \cap \left( {SDC} \right) = QP\\
\left( {MNP} \right) \cap \left( {ABCD} \right) = PN\\
\left( {MNP} \right) \cap \left( {SBC} \right) = NR\\
\left( {MNP} \right) \cap \left( {SAB} \right) = RM
\end{array} \right.\)

Từ đó ta có thiết diện là ngũ giác \(MQPNR\).

b) Trong \((ABCD)\) gọi \(H=AC\cap NP\)

\( \Rightarrow H \in AC \subset \left( {SAC} \right)\)\( \Rightarrow MH \subset \left( {SAC} \right)\)

Trong \(\left( {SAC} \right)\), gọi \(I = SO \cap MH \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in MH \subset \left( {MNP} \right)\end{array} \right.\)

\( \Rightarrow I = SO \cap \left( {MNP} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved