PHẦN GIẢI TÍCH - TOÁN 12

Giải bài 2 trang 90 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các bất phương trình lôgarit:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

a) \({\log_8}\left( {4 - {\rm{ }}2x} \right){\rm{ }} \ge {\rm{ }}2\);

Phương pháp giải:

Tìm ĐK.

Giải phương trình logarit cơ bản: \({\log _a}x \ge b \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\x \ge {a^b}\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\0 < x \le {a^b}\end{array} \right.\end{array} \right.\).

Lời giải chi tiết:

Điều kiện: \(4 - 2x > 0 \Leftrightarrow x < 2\)

\(\begin{array}{l}\,\,\,\,\,\,{\log _8}\left( {4 - 2x} \right) \ge 2\\\Leftrightarrow 4 - 2x \ge 8^2=64 \,\,(Do \,8>1)\\\Leftrightarrow 2x \le - 60\\\Leftrightarrow x \le - 30\end{array}\).

Kết hợp điều kiện \(x<2\) ta có \(x \le -30\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;-30} \right]\)

LG b

LG b

b) \({\log_\frac{1}{5}}(3x - 5)\) > \({\log_\frac{1}{5}}(x +1)\);

Phương pháp giải:

Tìm ĐK.

Giải phương trình logarit cơ bản: \({\log _a}f\left( x \right) > {\log _a}g\left( x \right)\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\end{array} \right.\)

Lời giải chi tiết:

ĐK:

\(\left\{ \begin{array}{l}3x - 5 > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \dfrac{5}{3}\\x > - 1\end{array} \right. \Leftrightarrow x > \dfrac{5}{3}\)

\(\begin{array}{l}{\log _{\frac{1}{5}}}\left( {3x - 5} \right) > {\log _{\frac{1}{5}}}\left( {x + 1} \right)\\\Leftrightarrow 3x - 5 < x + 1\,\, (Do\, \dfrac{1}{5}<1)\\\Leftrightarrow 2x < 6\\\Leftrightarrow x < 3\end{array}\)

Kết hợp điều kiện ta có: \(\dfrac{5}{3} <x<3\).

LG c

LG c

c) \({\log_{0,2}}x{\rm{ }}-{\rm{ }}{\log_5}\left( {x - {\rm{ }}2} \right){\rm{ }} < {\rm{ }}{\log_{0,2}}3\); 

Phương pháp giải:

Tìm ĐK.

Đưa về cùng logarit cơ số 0,2, sử dụng công thức cộng các logarit cùng cơ số: \({\log _a}x + {\log _a}y = {\log _a}\left( {xy} \right)\) (giả sử các biểu thức là có nghĩa).

Đưa về bất phương trình logarit cơ bản: 

\({\log _a}f\left( x \right) < {\log _a}g\left( x \right) \)\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\0 < f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right) > 0\end{array} \right.\end{array} \right.\).

Lời giải chi tiết:

Điều kiện: \(x > 2\). Chú ý rằng

\(\log_5(x- 2) = log_{\left ( \frac{1}{5} \right )^{-1}}(x- 2) \) \(= -\log_{0,2}(x- 2)\)

Nên bất phương trình đã cho tương đương với

\({\log_{0,2}}x{\rm{ }} + {\log_{0,2}}\left( {x - {\rm{ }}2} \right) < {\rm{ }}{\log_{0,2}}3\)

\(⇔{\log_{0,2}}x\left( {x - {\rm{ }}2} \right){\rm{ }} < {\rm{ }}{\log_{0,2}}3 \)

\(\Leftrightarrow {\rm{ }}x{\rm{ }}\left( {x{\rm{ }} - {\rm{ }}2} \right){\rm{ }} > {\rm{ }}3\) 

\(⇔ x^2- 2x – 3 > 0 \)

\(⇔ (x - 3) (x+ 1) > 0\)

\(⇔ x - 3 > 0 ⇔ x > 3\) (do \(x > 2\)).

Vậy tập nghiệm của bất phương trình là \( S = \left( 3; +\infty \right) \).

Cách khác:

Có thể đưa về cùng cơ số 5 như sau:

Điều kiện: \(x>2\)

\(\begin{array}{l}
{\log _{0,2}}x - {\log _5}(x - 2) < {\log _{0,2}}3\\
\Leftrightarrow {\log _{\frac{1}{5}}}x - {\log _5}(x - 2) < {\log _{\frac{1}{5}}}3\\
\Leftrightarrow {\log _{{5^{ - 1}}}}x - {\log _5}(x - 2) < {\log _{{5^{ - 1}}}}3\\
\Leftrightarrow - {\log _5}x - {\log _5}(x - 2) < - {\log _5}3\\
\Leftrightarrow {\log _5}x + {\log _5}(x - 2) > {\log _5}3\\
\Leftrightarrow {\log _5}\left[ {x(x - 2)} \right] > {\log _5}3\\
\Leftrightarrow x(x - 2) > 3\\
\Leftrightarrow {x^2} - 2x - 3 > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 3\\
x < - 1
\end{array} \right.
\end{array}\)

Kết hợp với điều kiện xác định được \(x > 3.\)

Vậy tập nghiệm của bất phương trình là: \((3; +∞).\)

LG d

LG d

d) \(\log_{3}^{2}x - 5\log_3 x + 6 ≤ 0\).

Phương pháp giải:

Tìm ĐK.

Giải bất phương trình bằng phương pháp đặt ẩn phụ: \(t = \log_3x\), đưa về phương trình bậc hai ẩn t.

Lời giải chi tiết:

ĐK: \(x>0\).

Đặt \(t = \log_3x\) ta được bất phương trình 

\(t^2– 5t + 6 ≤  0 ⇔ 2 ≤ t ≤ 3\).

\(⇔2 ≤ \log_3x ≤3 ⇔3^2 ≤  x ≤ 3^3 \) \( ⇔ 9 ≤ x ≤ 27\).

Kết hợp điều kiện ta có \(9 ≤ x ≤ 27\).

Vậy tập nghiệm của bất phương trình là \( S = \left[9;27 \right] \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved