Bài 2 trang 91 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong hệ toạ độ \(Oxyz\), cho mặt cầu \((S)\) có đường kính là \(AB\) biết rằng \(A( 6 ; 2 ; -5), B(-4 ; 0 ; 7)\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

a) Tìm toạ độ tâm \(I\) và tính bán kính \(r\) của mặt cầu \((S)\)

Phương pháp giải:

Tâm I là trung điểm của AB: \(I\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\) và bán kính \(R = \frac{{AB}}{2}\).

Lời giải chi tiết:

Tâm \(I\) của mặt cầu là trung điểm của đoạn thẳng \(AB\): \(I\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right) = \left( {1;1;1} \right)\)                 

\(A{B^2} = {\rm{ }}{\left( { - 4{\rm{ }} - {\rm{ }}6} \right)^2} + {\rm{ }}{\left( {{\rm{ }}0{\rm{ }} - {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {7{\rm{ }} + {\rm{ }}5} \right)^2} = {\rm{ }}248\)

\( \Rightarrow AB = \sqrt {248}  = 2\sqrt {62} \)

Vậy \(R = {{AB} \over 2} = \sqrt {62} \)

LG b

b) Lập phương trình của mặt cầu \((S)\).

Phương pháp giải:

Phương trình mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và có bán kính \(R\) có dạng: \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\)

Lời giải chi tiết:

Phương trình mặt cầu \((S)\)

\({\left( {x{\rm{ }} - {\rm{ }}1} \right)^2}{\rm{ }} + {\rm{ }}{\left( {y{\rm{ }} - {\rm{ }}1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }} - {\rm{ }}1} \right)^{2}} = {\rm{ }}62\)

\( \Leftrightarrow \) \({x^2}{\rm{ }} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2x{\rm{ }} - {\rm{ }}2y{\rm{ }} - {\rm{ }}2z{\rm{ }} - {\rm{ }}59{\rm{ }} = {\rm{ }}0\)

LG c

c) Lập phương trình của mặt phẳng \((α)\) tiếp xúc với mặt cầu \((S)\) tại điểm \(A\).

Phương pháp giải:

Mặt phẳng cần tìm đi qua A và nhận \( \overline {IA} \) là 1 VTPT.

Lời giải chi tiết:

Mặt phẳng tiếp xúc với mặt cầu tại điểm \(A\) chính là mặt phẳng qua \(A\) và vuông góc với bán kính \(IA\). Ta có:

\(\overrightarrow {IA}  = (5; 1 ; -6)\)

Phương trình mặt phẳng cần tìm là: \(5(x - 6) + 1(y - 2) - 6(z + 5) = 0\)

\( \Leftrightarrow 5x + y - 6z - 62 = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved