Bài 2 trang 99 SGK Hình học 12

Đề bài

Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh bằng \(a\). Gọi \(E\) và \(F\) lần lượt là trung điểm của \(B'C'\) và \(C'D'\). Mặt phẳng \((AEF)\) chia khối lập phương đó thành hai khối đa diện (H) và (H') trong đó (H) là khối đa diện chứa đỉnh \(A'\). Tính thể tích của (H).

Phương pháp giải - Xem chi tiết

Xác định thiết diện của hình lập phương khi cắt bởi mặt phẳng (AEF).

Phân chia và lắp ghép các khối đa diện.

Tính thể tích của (H'): \({V_{\left( {H'} \right)}} = {V_{C'EF.C{B_1}{D_1}}} - {V_{A.B{B_1}D}} - {V_{D{D_1}K}}\)

Lời giải chi tiết

Cách vẽ thiết diện:

Ta có \(EF // B'D'\) mà \(B'D' // BD\) nên từ \(A\) kẻ đường song song với \(BD\), cắt \(CD\) kéo dài tại \(D_1\) và \(CB\) kéo dài tại \(B_1\).

Nối \(B_1E\) cắt \(BB'\) tại \(G\). Nối \(D_1F\) cắt \(DD'\) tại \(K\).

Thiết diện là ngũ giác \(AGEFK\).

Hình (H) là khối \(AGEFK.A'B'D'\).

Theo giả thiết \(E\) là trung điểm của \(B'C'\); \(F\) là trung điểm của \(C'D'\), ta có \(BB_1= BC = a = 2B'E\) \( \Rightarrow BG = 2GB' = {2 \over 3}a\)

Từ đó \({V_{A.B{B_1}G}} = \frac{1}{3}AB.{S_{B{B_1}G}} = \frac{1}{3}a.\frac{1}{2}.a.\frac{2}{3}a = \frac{{{a^3}}}{9} = {V_1}\)

\({V_{(A.D{D_1}K)}} = {1 \over 3}.{S_{\Delta D{D_1}K}}.AD = {1 \over 9}{a^3} = {V_2}\)

Ta có:

\({S_{\Delta C{B_1}{D_1}}} = {1 \over 2}C{B_1}.C{D_1} = 2{a^2}\);

\({S_{\Delta EC'F}} = {1 \over 2}.C'E.C'F = {{{a^2}} \over 8}\)

Chiều cao hình chóp cụt \(CB_1D_1.C'EF \)là \(CC' = a\)

\({V_{C{C_1}{D_1}.C'EF}} = {1 \over 3}a\left( {2{a^2} + {{{a^2}} \over 8} + {{{a^2}} \over 2}} \right) = {{7{a^3}} \over 8}\)

Thể tích của khối (H') bằng:

\({V_{(H')}} = {V_{C{C_1}{D_1}.C'EF}} - ({V_1} + {V_2}) = {7 \over 8}{a^3} - {2 \over 9}{a^3} = {{47} \over {72}}{a^3}\)

Từ đó thể tích của khối (H) bằng:

\({V_{(H)}} = V\)lập phương\(-V\)(H') = \(a^3 - {{47} \over {72}}{a^3} = {{25} \over {72}}{a^3}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved