Bài 20 trang 170 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác MNP vuông tại M. Tia phân giác của góc N cắt MP tại E. Kẻ \(EF \bot NP(F \in NP).\)

a) Chứng minh rằng tam giác MNF cân.

b) Kẻ \(MH \bot NP.\)  Chứng minh rằng MF là phân giác của góc HME.

Lời giải chi tiết

 

a) Xét tam giác MNE vuông tại M và tam giác NEF vuông tại F ta có:

\(\widehat {MNE} = \widehat {FNE}\)   (NE là tia phân giác của góc MNF)

NE là cạnh chung.

Do đó: \(\Delta MNE = \Delta FNE\)  (cạnh huyền - góc nhọn)

=>MN = NF => tam giác MNF cân tại N.

b) Ta có: \(ME = EF(\Delta MNE = \Delta FNE)\)

=>Tam giác MEF cân tại E \(\Rightarrow \widehat {EMF} = \widehat {EFM}\)

Mặt khác \(MH \bot NP(gt);EF \bot NP(gt)\)

\(\Rightarrow MH//EF \Rightarrow \widehat {HMF} = \widehat {EFM}\)   (hai góc so le trong).

Mà \(\widehat {EMF} = \widehat {EFM}(cmt) \Rightarrow \widehat {HMF} = \widehat {EMF}\)

Vậy MF là tia phân giác của góc HME.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved