PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 20 trang 19 sgk Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e

Giải các hệ phương trình sau bằng phương pháp cộng đại số. 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e

LG a

LG a

\(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right.\)

Phương pháp giải:

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết:

Cộng vế với vế của hai phương trình trong hệ, ta được

 \(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 3x+y+2x-y =3+7 & & \\ 2x -y = 7& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 5x =10 & & \\ 2x -y = 7& & \end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{\begin{matrix} x =2 & & \\ y = 2x-7& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =2 & & \\ y = 2.2-7& & \end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} x =2 & & \\ y = -3& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((2; -3)\).

LG b

LG b

\(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right.\)

Phương pháp giải:

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết:

Trừ vế với vế của hai phương trình trong hệ, ta được:

 \(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5y =8 & & \\ 2x +5y-(2x-3y) = 8-0& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ 8y = 8& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ y = 1& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5.1 =8  \\ y = 1& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} x =\dfrac{3}{2} & & \\ y = 1& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \({\left(\dfrac{3}{2}; 1\right)}\).

LG c

LG c

\(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right.\)

Phương pháp giải:

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết:

 Nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ 4x + 2y =8& & \end{matrix}\right.\) 

\(\Leftrightarrow \left\{\begin{matrix} 4x+3y =6 & & \\ 4x +3y-(4x+2y) = 6-8& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ y = -2& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 4x+3.(-2) =6 & & \\ y = -2& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} 4x =12 & & \\ y = -2& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} x =3 & & \\ y = -2& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((3; -2)\).

LG d

LG d

\(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right.\)

Phương pháp giải:

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết:

Nhân hai vế của phương trình thứ nhất với \(3\), nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được

\(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 6x - 4y = -6& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 6x+9y =-6 & & \\ 6x +9y-(6x-4y) = -6-(-6)& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 13y = 0& & \end{matrix}\right. \Leftrightarrow\) \(\left\{\begin{matrix} x = -1 & & \\ y = 0 & & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((-1; 0)\).

LG e

LG e

\(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right.\)

Phương pháp giải:

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết:

Nhân hai vế của phương trình thứ nhất với \(5\) rồi trừ vế với vế của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 1,5x - 2y = 1,5 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 1,5x+2,5y =15 & & \\ 1,5x +2,5y-(1,5x-2y) = 15-1,5& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 4,5y = 13,5 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} 1,5x =15 -2, 5 . 3& & \\ y = 3 & & \end{matrix}\right.\) 

\(\Leftrightarrow \left\{\begin{matrix} 1,5x =7,5& & \\ y = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =5& & \\ y = 3 & & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((5; 3)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved