Bài 21 trang 103 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC. Vẽ đường tròn tâm I, đường kính AO, cắt AB, AC lần lượt tại H và K.

a) Chứng minh H, I, K thẳng hàng.

b) Tia OH và OK lần lượt cắt các tiếp tuyến tại B và C của đường tròn tâm O tại D và E. Chứng minh rằng BD + CE = DE và BD.CE = R2.

c) Gọi P,Q lần lượt là trung điểm của OD và OE. Chứng minh tứ giác APOQ nội tiếp.

d) Biết BD = 4 cm, EC = 6 cm. Hãy tính bán kính đường tròn ngoại tiếp tam giác DOE.

Phương pháp giải - Xem chi tiết

a) Chứng minh AHOK là hình chữ nhật suy ra I là trung điểm của HK.

b) Chứng minh A, D, E thẳng hàng, sử dụng tính chất 2 tiếp tuyến cắt nhau và hệ thức lượng trong tam giác vuông.

c) Chứng minh \(\widehat {PAQ} = {90^0}\), suy ra tứ giác APOQ có tổng hai góc đối bằng 1800.

d) Gọi O’ là trung điểm của DE. Vì \(\Delta ODE\) vuông tại O nên O’ là tâm đường tròn ngoại tiếp tam giác DOE và bán kính đường tròn ngoại tiếp tam giác DOE bằng \(\dfrac{{DE}}{2}\).

Lời giải chi tiết

 

 

a) Ta có \(\widehat {AHO} = \widehat {AKO} = {90^0}\) (góc nội tiếp chắn nửa đường tròn).

Xét tứ giác AHOK có: \(\widehat {HAK} = \widehat {AHO} = \widehat {AKO} = {90^0} \Rightarrow \) Tứ giác AHOK là hình chữ nhật (Tứ giác có 3 góc vuông).

\( \Rightarrow \) Hai đường chéo AO và HK cắt nhau tại trung điểm đường. Mà I là trung điểm của AO (gt) \( \Rightarrow I\) cũng là trung điểm của HK. Vậy H, I, K thẳng hàng.

b) +) Ta có:

\(\widehat {DAB} = \widehat {AOH}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AH).

\(\widehat {EAC} = \widehat {AOK}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AK).

\( \Rightarrow \widehat {DAB} + \widehat {HAK} + \widehat {EAC}\)\(\, = \widehat {AOH} + \widehat {HAK} + \widehat {AOK} \)\(\,= \widehat {HAK} + \widehat {HOK} = {180^0}\) (tổng hai góc đối của tứ giác nội tiếp) \( \Rightarrow D;A;E\) thẳng hàng.

Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có \(BD = AD;\,\,CE = AE\)

\( \Rightarrow BD + CE = AD + AE\). Mà D; A; E thẳng hàng (cmt) \( \Rightarrow AD + AE = DE\). Vậy \(BD + CE = DE\).

+) Ta có: \(BD.CE = AD.AE\).

Ta có: \(\widehat {DAO} = \widehat {AKO}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AO).

Mà \(\widehat {AKO} = {90^0}\) (AHOK là hình chữ nhật) \( \Rightarrow \widehat {DAO} = {90^0} \Rightarrow AO \bot DE\) tại A.

\(\widehat {HOK} = {90^0}\) (AHOK là hình chữ nhật) \( \Rightarrow \Delta DOE\) vuông tại O.

Áp dụng hệ thức lượng trong tam giác vuông DOE có : \(AD.AE = A{O^2} = {R^2}\).

Vậy BD.CE = R2.

c) Xét tam giác vuông OAD có AP là trung tuyến ứng với cạnh huyền OD \( \Rightarrow PA = PO = PD \Rightarrow \Delta PAO\) cân tại P \( \Rightarrow \widehat {POA} = \widehat {PAO}\).

 

Chứng minh tương tự ta có : \(\widehat {QOA} = \widehat {QAO}\).

\( \Rightarrow \widehat {PAQ} = \widehat {PAO} + \widehat {QAO} \)\(\,= \widehat {POA} + \widehat {QOA} = \widehat {POQ} = {90^0}\).

Xét tứ giác APOQ có: \(\widehat {POQ} + \widehat {PAQ} = {90^0} + 90 = {180^0} \Rightarrow \) Tứ giác APOQ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

d) Gọi O’ là trung điểm của DE. Vì \(\Delta ODE\) vuông tại O nên O’ là tâm đường tròn ngoại tiếp tam giác DOE và bán kính đường tròn ngoại tiếp tam giác DOE bằng \(\dfrac{{DE}}{2}\).

Mà \(DE = BD + CE = 4 + 6 = 10\,\,\left( {cm} \right)\)

\(\Rightarrow R = \dfrac{{DE}}{2} = 5\,\,\left( {cm} \right)\).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved