Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải vài phương trình của An Khô-va-ri-zmi (Xem Toán 7, Tập 2, tr.26):
LG a
LG a
\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288\)
Phương pháp giải:
Bước 1: Thực hiện chuyển các số hạng sang vế trái, vế phải bằng \(0\).
Bước 2: Áp dụng công thức tính nghiệm thu gọn: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac.\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
Lời giải chi tiết:
Ta có:
\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288{\rm{ }} \Leftrightarrow {\rm{ }}{x^2} - {\rm{ }}12x{\rm{ }} - {\rm{ }}288{\rm{ }} = {\rm{ }}0\)
\(\Rightarrow \Delta' {\rm{ }} = {\rm{ }}{\left( { - 6} \right)^{2}}-{\rm{ }}1{\rm{ }}.{\rm{ }}\left( { - 288} \right){\rm{ }} = {\rm{ }}36{\rm{ }} + {\rm{ }}288{\rm{ }} = {\rm{ }}324 > 0 \)
Do đó phương trình đã cho có hai nghiệm phân biệt:
\({x_1} =\dfrac{6-\sqrt{324}}{1}=6-18=-12\).
\({x_2} =\dfrac{6+\sqrt{324}}{1}=6+18=24\).
LG b
LG b
\(\dfrac{1}{12}x^2 + \dfrac{7}{12}x = 19\)
Phương pháp giải:
Bước 1: Thực hiện chuyển các số hạng sang vế trái, vế phải bằng \(0\). Qui đồng và bỏ mẫu.
Bước 2: Áp dụng công thức nghiệm của phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với biệt thức: \(\Delta =b^2-4ac.\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};\ x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
Lời giải chi tiết:
Ta có:
\(\dfrac{1}{12}{x^2} + \dfrac{7 }{12}x = 19\)
\(\Leftrightarrow {x^2} + 7x-228= 0\)
\(\Rightarrow {\rm{ }}\Delta {\rm{ }} = {\rm{ }}49{\rm{ }}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 228} \right){\rm{ }} = {\rm{ }}49{\rm{ }} + {\rm{ }}912{\rm{ }}\)
\(= {\rm{ }}961{\rm{ }} = {\rm{ }}{31^2} > 0\)
Do đó phương trình đã cho có hai nghiệm phân biệt:
\({x_1} =\dfrac{ - 7 + 31}{2} = 12,\)
\({x_2} = \dfrac{ - 7 - 31}{2} = - 19\)
Bài 40. Thực hành: Đánh giá tiềm năng kinh tế của các đảo ven bờ và tìm hiểu về ngành công nghiệp dầu khí
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
Đề thi vào 10 môn Văn Quảng Ngãi
Unit 7: Saving Energy - Tiết kiệm năng lượng
CHƯƠNG 4. HIĐROCACBON. NHIÊN LIỆU