Đề bài
Hãy tính thể tích, diện tích bề mặt một chi tiết máy theo kích thước đã cho trong hình sau:
Phương pháp giải - Xem chi tiết
Chi tiết máy đã cho được tạo nên bởi 2 hình trụ, áp dụng các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của khối trụ.
Lời giải chi tiết
Chi tiết máy được tạp nên bởi 2 hình trụ.
Hình trụ thứ nhất có bán kính đáy \({R_1} = 5,5cm\), chiều cao \({h_1} = 2cm\)
\( \Rightarrow \) Diện tích toàn phần của hình trụ thứ nhất là
\({S_{tp1}} = 2\pi {R_1}{h_1} + 2\pi R_1^2 \)\(\,= 2\pi .5,5.2 + 2\pi {.2^2} = 30\pi \,\,\left( {c{m^2}} \right)\)
Thể tích của hình trụ thứ nhất là \({V_1} = \pi R_1^2{h_1} = \pi .5,{5^2}.2 = \dfrac{{121\pi }}{2}\,\,\left( {c{m^3}} \right)\).
Hình trụ thứ nhất có bán kính đáy \({R_2} = 3cm\), chiều cao \({h_1} = 7cm\)
\( \Rightarrow \) Diện tích toàn phần của hình trụ thứ nhất là
\({S_{tp2}} = 2\pi {R_2}{h_2} + 2\pi R_2^2\)\(\, = 2\pi .3.7 + 2\pi {.3^2} = 60\pi \,\,\left( {c{m^2}} \right)\)
Thể tích của hình trụ thứ nhất là \({V_2} = \pi R_2^2{h_2} = \pi {.3^2}.7 = 63\pi \,\,\left( {c{m^3}} \right)\).
Do phần diện tích tiếp xúc giữa 2 hình trụ được tính 2 lần nên diện tích bề mặt của chi tiết máy là
\(S = {S_{tp1}} + {S_{tp2}} - {S_{tx}} \)\(\,= 30\pi + 60\pi - \pi {.3^2} = 81\pi \,\,\left( {c{m^2}} \right)\).
Thể tích của chi tiết máy là \(V = {V_1} + {V_2} = \dfrac{{121}}{2}\pi + 63\pi = \dfrac{{247}}{2}\pi \,\,\left( {c{m^3}} \right)\).
PHẦN HÌNH HỌC - TOÁN 9 TẬP 2
CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN
Đề kiểm tra giữa kì 2
Đề thi vào 10 môn Toán Bắc Ninh
Bài 14: Quyền và nghĩa vụ lao động của công dân