Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:
LG a
LG a
\(\left\{\begin{matrix} \dfrac{1}{x} - \dfrac{1}{y} = 1& & \\ \dfrac{3}{x} + \dfrac{4}{y} = 5& & \end{matrix}\right.\)
Hướng dẫn. Đặt \(u =\dfrac{1}{x},\ v =\dfrac{1}{y}\)
Phương pháp giải:
Phương pháp đặt ẩn phụ:
+) Đặt điều kiện (nếu có)
+) Đặt ẩn phụ và điều kiện của ẩn phụ (nếu có).
+) Giải hệ phương trình theo các ẩn phụ đã đặt.
+) Trở lại ẩn ban đầu để tìm nghiệm của hệ.
Lời giải chi tiết:
Điền kiện \(x ≠ 0, y ≠ 0\).
Đặt \(\left\{\begin{matrix} u = \dfrac{1}{x} & & \\ v = \dfrac{1}{y} & & \end{matrix}\right.\) (với \(u \ne 0,\ v \ne 0\) ).
Hệ phương trình đã cho trở thành:
\(\left\{\begin{matrix} u - v = 1 & & \\ 3u + 4v = 5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3u - 3v = 3 & & \\ 3u + 4v = 5& & \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
3u - 3v - \left( {3u + 4v} \right) = 3 - 5\\
3u + 4v = 5
\end{array} \right.\)
\(\Leftrightarrow \left\{\begin{matrix} -7v = -2 & & \\ 3u = 5- 4v & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} v =\dfrac{2}{7} & & \\ 3u = 5- 4.\dfrac{2}{7} & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} v =\dfrac{2}{7} & & \\ u = \dfrac{9}{7} & & \end{matrix} (thỏa\ mãn )\right.\)
\(\Rightarrow\) \(\left\{\begin{matrix} \dfrac{1}{x} = \dfrac{9}{7}& & \\ \dfrac{1}{y} = \dfrac{2}{7}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = \dfrac{7}{9}& & \\ y = \dfrac{7}{2}& & \end{matrix}(thỏa\ mãn )\right.\)
Vậy hệ đã cho có nghiệm duy nhất \( {\left(\dfrac{7}{9};\dfrac{7}{2} \right)}\).
LG b
LG b
\(\left\{\begin{matrix} \dfrac{1}{x - 2} + \dfrac{1}{y -1} = 2 & & \\ \dfrac{2}{x - 2} - \dfrac{3}{y - 1} = 1 & & \end{matrix}\right.\)
Hướng dẫn. Đặt \(u = \dfrac{1}{x - 2},\ v = \dfrac{1}{y - 1}\).
Phương pháp giải:
Phương pháp đặt ẩn phụ:
+) Đặt điều kiện (nếu có)
+) Đặt ẩn phụ và điều kiện của ẩn phụ (nếu có).
+) Giải hệ phương trình theo các ẩn phụ đã đặt.
+) Trở lại ẩn ban đầu để tìm nghiệm của hệ.
Lời giải chi tiết:
Điều kiện \(\left\{\begin{matrix} x-2 \ne 0 & & \\ y-1 \ne 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x \ne 2 & & \\ y \ne 1 & & \end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} u = \dfrac{1}{x -2} & & \\ v = \dfrac{1}{y -1} & & \end{matrix}\right.\) (với \(u \ne 0,\ v \ne 0\) ).
Hệ phương trình đã cho trở thành:
\(\left\{\begin{matrix} u + v = 2 & & \\ 2u - 3v = 1 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2u + 2v = 4 & & \\ 2u - 3v = 1 & & \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
2u + 2v - \left( {2u - 3v} \right) = 4 - 1\\
u + v = 2
\end{array} \right.\)
\(\Leftrightarrow \left\{\begin{matrix} 5v = 3 & & \\ u+v=2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} v = \dfrac{3}{5} & & \\ u=2-v & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} v = \dfrac{3}{5} & & \\ u=2-\dfrac{3}{5} & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} v = \dfrac{3}{5} & & \\ u=\dfrac{7}{5} & & \end{matrix} (thỏa\ mãn)\right.\)
\(\Rightarrow\) \(\left\{\begin{matrix} \dfrac{1}{x -2} = \dfrac{7}{5}& & \\ \dfrac{1}{y -1} = \dfrac{3}{5}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x -2 = \dfrac{5}{7}& & \\ y - 1 = \dfrac{5}{3}& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{5}{7}+ 2& & \\ y = \dfrac{5}{3}+1& & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{19}{7}& & \\ y = \dfrac{8}{3}& & \end{matrix} (thỏa\ mãn)\right.\)
Vậy hệ đã cho có nghiệm duy nhất \( {\left(\dfrac{19}{7};\dfrac{8}{3} \right)}\).
Bài 39. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo (tiếp theo)
Unit 2: Clothing - Quần áo
Đề kiểm tra 15 phút - Chương 5 - Hóa học 9
CHƯƠNG II. HÀM SỐ BẬC NHẤT
Đề thi vào 10 môn Toán Thái Nguyên